Description
Typically, when fully developed leaves of Arabidopsis thaliana are exposed to an increase in light intensity, they are able to increase their photosynthetic capacity in a process known as dynamic acclimation. Fully developed leaves of Arabidopsis thaliana were exposed to a fourfold increase in light intensity for 7 days to induce high light acclimation. This treatment was subjected to wild-type and a non-acclimating mutant lacking the gpt2 gene. The proteomic responses of the leaves were investigated using label-free mass spectrometry. A large reorganisation of the proteome was shown, with increases in the abundance of proteins of photosynthesis and carbon metabolism. Subtle differences were seen between the WT and gpt2 mutant: in the mutant, an increased stress response was seen, and some differences in the responses of metabolism. Proteomic responses generally correlated with physiological responses.
Date made available | 2017 |
---|---|
Publisher | PRoteomics IDEntifications Database |
Date of data production | 20 Jul 2017 |
Keywords
- Arabidopsis
- label free
- proteomics
- high light acclimation
- dynamic acclimation
Equipment
-
Biological Mass Spectrometry (BioMS) Facility
Knight, D. (Platform Lead), Warwood, S. (Senior Technical Specialist), Selley, J. (Technical Specialist), Taylor, G. (Technical Specialist), Fullwood, P. (Technical Specialist), Keevill, E.-J. (Senior Technician) & Allsey, J. (Technician)
FBMH Platform Sciences, Enabling Technologies & InfrastructureFacility/equipment: Facility