4D In-Situ Microscopy of Aerosol Filtration in a Wall Flow Filter

Matthew P. Jones, Malte Storm, Andrew P.E. York, Timothy I. Hyde, Gareth D. Hatton, Alex G. Greenaway, Sarah J. Haigh, David S. Eastwood (Corresponding)

Research output: Contribution to journalArticlepeer-review

102 Downloads (Pure)

Abstract

The transient nature of the internal pore structure of particulate wall flow filters, caused by the continuous deposition of particulate matter, makes studying their flow and filtration characteristics challenging. In this article we present a new methodology and first experimental demonstration of time resolved in-situ synchrotron micro X-ray computed tomography (micro-CT) to study aerosol filtration. We directly imaged in 4D (3D plus time) pore scale deposits of TiO2 nanoparticles (nominal mean primary diameter of 25 nm) with a pixel resolution of 1.6 μm. We obtained 3D tomograms at a rate of ∼1 per minute. The combined spatial and temporal resolution allows us to observe pore blocking and filling phenomena as they occur in the filter’s pore space. We quantified the reduction in filter porosity over time, from an initial porosity of 0.60 to a final porosity of 0.56 after 20 min. Furthermore, the penetration depth of particulate deposits and filtration rate was quantified. This novel image-based method offers valuable and statistically relevant insights into how the pore structure and function evolves during particulate filtration. Our data set will allow validation of simulations of automotive wall flow filters. Evolutions of this experimental design have potential for the study of a wide range of dry aerosol filters and could be directly applied to catalysed automotive wall flow filters.
Original languageEnglish
Article number5676
Number of pages13
JournalMaterials
Volume13
Issue number24
DOIs
Publication statusPublished - 12 Dec 2020

Keywords

  • Aerosol
  • Filtration
  • In-situ
  • Novel methods
  • Particulate filter
  • Particulate matter
  • Porous media
  • Synchrotron imaging
  • X-ray micro-CT

Fingerprint

Dive into the research topics of '4D In-Situ Microscopy of Aerosol Filtration in a Wall Flow Filter'. Together they form a unique fingerprint.

Cite this