A Bayesian Model of Perceived Head-Centered Velocity during Smooth Pursuit Eye Movement

    Research output: Contribution to journalArticlepeer-review

    Abstract

    During smooth pursuit eye movement, observers often misperceive velocity. Pursued stimuli appear slower (Aubert-Fleishl phenomenon [1, 2]), stationary objects appear to move (Filehne illusion [3]), the perceived direction of moving objects is distorted (trajectory misperception [4]), and self-motion veers away from its true path (e.g., the slalom illusion [5]). Each illusion demonstrates that eye speed is underestimated with respect to image speed, a finding that has been taken as evidence of early sensory signals that differ in accuracy [4, 6-11]. Here we present an alternative Bayesian account, based on the idea that perceptual estimates are increasingly influenced by prior expectations as signals become more uncertain [12-15]. We show that the speeds of pursued stimuli are more difficult to discriminate than fixated stimuli. Observers are therefore less certain about motion signals encoding the speed of pursued stimuli, a finding we use to quantify the Aubert-Fleischl phenomenon based on the assumption that the prior for motion is centered on zero [16-20]. In doing so, we reveal an important property currently overlooked by Bayesian models of motion perception. Two Bayes estimates are needed at a relatively early stage in processing, one for pursued targets and one for image motion. © 2010 Elsevier Ltd. All rights reserved.
    Original languageEnglish
    Pages (from-to)757-762
    Number of pages5
    JournalCurrent Biology
    Volume20
    Issue number8
    DOIs
    Publication statusPublished - 27 Apr 2010

    Keywords

    • SYSNEURO

    Fingerprint

    Dive into the research topics of 'A Bayesian Model of Perceived Head-Centered Velocity during Smooth Pursuit Eye Movement'. Together they form a unique fingerprint.

    Cite this