TY - JOUR
T1 - A biological route to conjugated alkenes: microbial production of hepta-1,3,5-triene
AU - Messiha, Hanan
AU - Payne, Karl
AU - Scrutton, Nigel
AU - Leys, David
PY - 2020/12/10
Y1 - 2020/12/10
N2 - Conjugated alkenes such as dienes and polyenes have a range of applications as pharmaceutical agents and valuable building blocks in the polymer industry. Development of a renewable route to these compounds provides an alternative to fossil fuel derived production. The enzyme family of the UbiD decarboxylases offers substantial scope for alkene production, readily converting poly-unsaturated acids. However, biochemical pathways producing the required substrates are poorly characterized, and UbiD-application has hitherto been limited to biological styrene production. Herein, we present a proof-of-principle study for microbial production of polyenes using a bioinspired strategy employing a polyketide synthase (PKS) in combination with a UbiD-enzyme. Deconstructing a bacterial iterative type II PKS enabled repurposing the broad-spectrum antibiotic andrimid biosynthesis pathway to access the metabolic intermediate 2,4,6-octatrienoic acid, a valuable chemical for material and pharmaceutical industry. Combination with the fungal ferulic acid decarboxylase (Fdc1) led to a biocatalytic cascade-type reaction for the production of hepta-1,3,5-triene in vivo. Our approach provides a novel route to generate unsaturated hydrocarbons and related chemicals and provides a blue-print for future development and application.
AB - Conjugated alkenes such as dienes and polyenes have a range of applications as pharmaceutical agents and valuable building blocks in the polymer industry. Development of a renewable route to these compounds provides an alternative to fossil fuel derived production. The enzyme family of the UbiD decarboxylases offers substantial scope for alkene production, readily converting poly-unsaturated acids. However, biochemical pathways producing the required substrates are poorly characterized, and UbiD-application has hitherto been limited to biological styrene production. Herein, we present a proof-of-principle study for microbial production of polyenes using a bioinspired strategy employing a polyketide synthase (PKS) in combination with a UbiD-enzyme. Deconstructing a bacterial iterative type II PKS enabled repurposing the broad-spectrum antibiotic andrimid biosynthesis pathway to access the metabolic intermediate 2,4,6-octatrienoic acid, a valuable chemical for material and pharmaceutical industry. Combination with the fungal ferulic acid decarboxylase (Fdc1) led to a biocatalytic cascade-type reaction for the production of hepta-1,3,5-triene in vivo. Our approach provides a novel route to generate unsaturated hydrocarbons and related chemicals and provides a blue-print for future development and application.
M3 - Article
SN - 2161-5063
JO - ACS Synthetic Biology
JF - ACS Synthetic Biology
ER -