Abstract
Background: Multilevel data integration is becoming a major area of research in systems biology. Within this area, multi-'omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-'omics signatures of disease states. Methods: The framework is divided into four major steps: dataset subsetting, feature filtering, 'omics-based clustering and biomarker identification. Results: We illustrate the usefulness of this framework by identifying potential patient clusters based on integrated multi-'omics signatures in a publicly available ovarian cystadenocarcinoma dataset. The analysis generated a higher number of stable and clinically relevant clusters than previously reported, and enabled the generation of predictive models of patient outcomes. Conclusions: This framework will help health researchers plan and perform multi-'omics big data analyses to generate hypotheses and make sense of their rich, diverse and ever growing datasets, to enable implementation of translational P4 medicine.
Original language | English |
---|---|
Article number | 60 |
Journal | BMC Systems Biology |
Volume | 12 |
Issue number | 1 |
DOIs | |
Publication status | Published - 29 May 2018 |
Keywords
- 'Omics data
- Molecular signatures
- Stratification
- Systems medicine