A Control Approach for Human-Robot Ergonomic Payload Lifting

Lorenzo Rapetti, Carlotta Sartore, Mohamed Elobaid, Yeshasvi Tirupachuri, Francesco Draicchio, Tomohiro Kawakami, Takahide Yoshiike, Daniele Pucci

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Collaborative robots can relief human operators from excessive efforts during payload lifting activities. Modelling the human partner allows the design of safe and efficient collaborative strategies. In this paper, we present a control approach for human-robot collaboration based on human monitoring through whole-body wearable sensors, and interaction modelling through coupled rigid-body dynamics. Moreover, a trajectory advancement strategy is proposed, allowing for online adaptation of the robot trajectory depending on the human motion. The resulting framework allows us to perform payload lifting tasks, taking into account the ergonomic requirements of the agents. Validation has been performed in an experimental scenario using the iCub3 humanoid robot and a human subject sensorized with the iFeel wearable system.

Original languageEnglish
Title of host publicationProceedings - ICRA 2023
Subtitle of host publicationIEEE International Conference on Robotics and Automation
PublisherIEEE
Pages7504-7510
Number of pages7
ISBN (Electronic)9798350323658
DOIs
Publication statusPublished - 2023
Event2023 IEEE International Conference on Robotics and Automation, ICRA 2023 - London, United Kingdom
Duration: 29 May 20232 Jun 2023

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2023-May
ISSN (Print)1050-4729

Conference

Conference2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Country/TerritoryUnited Kingdom
CityLondon
Period29/05/232/06/23

Fingerprint

Dive into the research topics of 'A Control Approach for Human-Robot Ergonomic Payload Lifting'. Together they form a unique fingerprint.

Cite this