TY - JOUR
T1 - A Deep Learning Framework for Predicting Response to Therapy in Cancer
AU - Sakellaropoulos, Theodore
AU - Vougas, Konstantinos
AU - Narang, Sonali
AU - Koinis, Filippos
AU - Kotsinas, Athanassios
AU - Polyzos, Alexander
AU - Moss, Tyler J
AU - Piha-Paul, Sarina
AU - Zhou, Hua
AU - Kardala, Eleni
AU - Damianidou, Eleni
AU - Alexopoulos, Leonidas G
AU - Aifantis, Iannis
AU - Townsend, Paul A
AU - Panayiotidis, Mihalis I
AU - Sfikakis, Petros
AU - Bartek, Jiri
AU - Fitzgerald, Rebecca C
AU - Thanos, Dimitris
AU - Mills Shaw, Kenna R
AU - Petty, Russell
AU - Tsirigos, Aristotelis
AU - Gorgoulis, Vassilis G
N1 - Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
PY - 2019/12/10
Y1 - 2019/12/10
N2 - A major challenge in cancer treatment is predicting clinical response to anti-cancer drugs on a personalized basis. Using a pharmacogenomics database of 1,001 cancer cell lines, we trained deep neural networks for prediction of drug response and assessed their performance on multiple clinical cohorts. We demonstrate that deep neural networks outperform the current state in machine learning frameworks. We provide a proof of concept for the use of deep neural network-based frameworks to aid precision oncology strategies.
AB - A major challenge in cancer treatment is predicting clinical response to anti-cancer drugs on a personalized basis. Using a pharmacogenomics database of 1,001 cancer cell lines, we trained deep neural networks for prediction of drug response and assessed their performance on multiple clinical cohorts. We demonstrate that deep neural networks outperform the current state in machine learning frameworks. We provide a proof of concept for the use of deep neural network-based frameworks to aid precision oncology strategies.
U2 - 10.1016/j.celrep.2019.11.017
DO - 10.1016/j.celrep.2019.11.017
M3 - Article
C2 - 31825821
SN - 2211-1247
VL - 29
SP - 3367-3373.e4
JO - Cell Reports
JF - Cell Reports
IS - 11
ER -