A detailed view on the circumstellar environment of the M-type AGB star EP Aquarii I. High-resolution ALMA and SPHERE observations

Ward Homan, Emily Cannon, Miguel Montargès, Anita M. S. Richards, Tom J. Millar, Leen Decin

Research output: Contribution to journalArticlepeer-review

30 Downloads (Pure)


Cool evolved stars are known to be significant contributors to the enrichment of the interstellar medium through their dense and dusty stellar winds. High resolution observations of these outflows have shown them to possess high degrees of morphological complexity. We observed the asymptotic giant branch (AGB) star EP Aquarii with ALMA in band 6 and VLT/SPHERE/ZIMPOL in four filters the visible. Both instruments had an angular resolution of 0.025''. These are follow-up observations to the lower-resolution 2016 ALMA analysis of EP Aquarii, which revealed that its wind possesses a nearly face-on, spiral-harbouring equatorial density enhancement, with a nearly pole-on bi-conical outflow. At the base of the spiral, the SiO emission revealed a distinct emission void approximately 0.4'' to the west of the continuum brightness peak, which was proposed to be linked to the presence of a companion. The new ALMA data better resolve the inner wind and reveal that its morphology as observed in CO is consistent with hydrodynamical companion-induced perturbations. Assuming that photodissociation by the UV-field of the companion is responsible for the emission void in SiO, we deduced the spectral properties of the tentative companion from the size of the hole. We conclude that the most probable companion candidate is a white dwarf with a mass between 0.65 and 0.8 Msol , though a solar-like companion could not be definitively excluded. The radial SiO emission shows periodic, low-amplitude perturbations. We tentatively propose that they could be the consequence of the interaction of the AGB wind with another much closer low-mass companion. The polarised SPHERE/ZIMPOL data show a circular signal surrounding the AGB star with a radius of 0.1''...
Original languageEnglish
Article numberA93
Publication statusPublished - 7 Oct 2020


  • Circumstellar matter
  • Stars: AGB and post-AGB
  • Stars: mass-loss
  • Submillimeter: stars


Dive into the research topics of 'A detailed view on the circumstellar environment of the M-type AGB star EP Aquarii I. High-resolution ALMA and SPHERE observations'. Together they form a unique fingerprint.

Cite this