TY - JOUR
T1 - A Fundamental Analysis of Factors Affecting Chemical Homogeneity in the Laser Powder Bed Fusion Process
AU - Flint, Thomas
AU - Anderson, M. .J.
AU - Akrivos, Vasileios
AU - Roy, Matthew
AU - Francis, John
AU - Vasileiou, Anastasia
AU - Smith, Michael
PY - 2022/4/27
Y1 - 2022/4/27
N2 - In this work a novel mathematical framework, that fully describes the fusion and vapourisation state transitions in multi-component systems, has been applied to assist in understanding the fundamental mechanisms of defect formation and chemical homogenisation in the laser powder bed fusion process (L-PBF). Specifically, the role of vapourisation and condensation of the multi-component metallic substrate is investigated to determine the importance of properly capturing the state transitions when understanding the substrate evolution. The framework is applied to a ternary metallic system; it is revealed that entrained vapour bubbles in chemically dissimilar flows promote greater homogenisation during the condensation and collapse of these bubbles when compared to non-condensing phases. It is further shown that as the laser power density is increased, there is a greater tendency for preferential element evaporation of the lighter elements; this preferential element evaporation is quantified numerically for the first time, and shown to be a non-linear function of power density.
AB - In this work a novel mathematical framework, that fully describes the fusion and vapourisation state transitions in multi-component systems, has been applied to assist in understanding the fundamental mechanisms of defect formation and chemical homogenisation in the laser powder bed fusion process (L-PBF). Specifically, the role of vapourisation and condensation of the multi-component metallic substrate is investigated to determine the importance of properly capturing the state transitions when understanding the substrate evolution. The framework is applied to a ternary metallic system; it is revealed that entrained vapour bubbles in chemically dissimilar flows promote greater homogenisation during the condensation and collapse of these bubbles when compared to non-condensing phases. It is further shown that as the laser power density is increased, there is a greater tendency for preferential element evaporation of the lighter elements; this preferential element evaporation is quantified numerically for the first time, and shown to be a non-linear function of power density.
M3 - Article
SN - 0017-9310
JO - International Journal of Heat and Mass Transfer
JF - International Journal of Heat and Mass Transfer
ER -