A global view of atmospheric ice particle 1 complexity

Carl Schmitt, Andrew J. Heymsfield, Paul Connolly, Emma Jarvinen, Martin Schnaiter

    Research output: Contribution to journalArticlepeer-review

    200 Downloads (Pure)

    Abstract

    Atmospheric ice particles exist in a variety of shapes and sizes. Single hexagonal crystals like common hexagonal plates and columns are possible, but more frequently, atmospheric ice particles are much more complex. Ice particle shapes have a substantial impact on many atmospheric processes through fall speed, affecting cloud lifetime, to radiative properties, affecting energy balance to name a few. This publication builds on earlier work where a technique was demonstrated to separate single crystals and aggregates of crystals using particle imagery data from aircraft field campaigns. Here, data from 10 field programs have been analyzed and ice particle complexity parameterized by cloud temperature for arctic, mid-latitude (summer and frontal), and tropical cloud systems. Results show that the transition from simple to complex particles can be as small as 80 microns or as large as 400 microns depending on conditions. All regimes show trends of decreasing transition size with decreasing temperature.
    Original languageEnglish
    Pages (from-to)11913-11920
    Number of pages8
    JournalGeophysical Research Letters
    Volume43
    Issue number22
    Early online date26 Nov 2016
    DOIs
    Publication statusPublished - 14 Dec 2016

    Fingerprint

    Dive into the research topics of 'A global view of atmospheric ice particle 1 complexity'. Together they form a unique fingerprint.

    Cite this