TY - JOUR
T1 - A graphene-nanoribbon-based thermoelectric generator
AU - Wei, Tianye
AU - Li, Hu
AU - Fu, Yangming
AU - Zheng, Xiaoxiao
AU - Huang, Long
AU - Song, Aimin
PY - 2023/6/15
Y1 - 2023/6/15
N2 - Unlike graphene flakes which are semi-metallic with zero bandgaps, graphene nanoribbons (GNRs) are semiconductors with a sizeable bandgap generated by lateral quantum confinement. In this work, semiconducting GNRs are synthesized to fabricate thermoelectric generators (TEGs), which have been envisaged theoretically but are yet to be demonstrated experimentally to date. The GNRs are produced by unzipping single-walled carbon nanotubes through a mild chemical rection and ultrasonic process in solution. The semiconducting nature of the GNRs is demonstrated by strong, sharp emission of photoluminescence at 685 nm, corresponding to a bandgap of 1.81 eV, and further confirmed by on/off ratios up to 400 in the GNR-based field-effect transistors. The GNR TEGs exhibit a high Seebeck coefficient of 68 μVK−1 and a power factor of 6.76 μWm−1K−2 at room temperature, which are amongst the best in carbon-based thermoelectric devices. Finally, tests also demonstrate that the GNR TEGs are mechanically robust and flexible, showing promise in thermoelectric applications for flexible electronics.
AB - Unlike graphene flakes which are semi-metallic with zero bandgaps, graphene nanoribbons (GNRs) are semiconductors with a sizeable bandgap generated by lateral quantum confinement. In this work, semiconducting GNRs are synthesized to fabricate thermoelectric generators (TEGs), which have been envisaged theoretically but are yet to be demonstrated experimentally to date. The GNRs are produced by unzipping single-walled carbon nanotubes through a mild chemical rection and ultrasonic process in solution. The semiconducting nature of the GNRs is demonstrated by strong, sharp emission of photoluminescence at 685 nm, corresponding to a bandgap of 1.81 eV, and further confirmed by on/off ratios up to 400 in the GNR-based field-effect transistors. The GNR TEGs exhibit a high Seebeck coefficient of 68 μVK−1 and a power factor of 6.76 μWm−1K−2 at room temperature, which are amongst the best in carbon-based thermoelectric devices. Finally, tests also demonstrate that the GNR TEGs are mechanically robust and flexible, showing promise in thermoelectric applications for flexible electronics.
U2 - 10.1016/j.carbon.2023.118053
DO - 10.1016/j.carbon.2023.118053
M3 - Article
SN - 0008-6223
VL - 210
JO - Carbon
JF - Carbon
M1 - 118053
ER -