A human folliculoid microsphere assay for exploring epithelial- mesenchymal interactions in the human hair follicle

Blanka Havlickova, Tamás Bíró, Alessandra Mescalchin, Miriam Tschirschmann, Hans Mollenkopf, Albrecht Bettermann, Paolo Pertile, Roland Lauster, Enikö Bodó, Ralf Paus

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The search for more effective drugs for the management of common hair growth disorders remains a top priority, both for clinical dermatology and industry. In this pilot study, we report a pragmatic organotypic assay for basic and applied hair research. The patented technique produces microdroplets, which generate human folliculoid microspheres (HFMs), consisting of human dermal papilla fibroblasts and outer root sheath keratinocytes within an extracellular matrix that simulates elements of the hair follicle mesenchyme. Studying a number of different markers (for example, proliferation, apoptosis, cytokeratin-6, versican), we show that these HFMs, cultured under well-defined conditions, retain several essential epithelial-mesenchymal interactions characteristic for human scalp hair follicle. Selected, recognized hair growth-modulatory agents modulate these parameters in a manner that suggests that HFMs allow the standardized preclinical assessment of test agents on relevant human hair growth markers under substantially simplified in vitro conditions that approximate the in vivo situation. Furthermore, we show by immunohistochemistry, reverse transcriptase-PCR, and DNA microarray techniques that HFMs also offer a useful discovery tool for the identification of target genes and their products for candidate hair drugs. HFM thus represent an instructive modern experimental and screening tool for basic and applied hair research in the human system. © 2009 The Society for Investigative Dermatology.
    Original languageEnglish
    Pages (from-to)972-983
    Number of pages11
    JournalJournal of Investigative Dermatology
    Volume129
    Issue number4
    DOIs
    Publication statusPublished - Apr 2009

    Fingerprint

    Dive into the research topics of 'A human folliculoid microsphere assay for exploring epithelial- mesenchymal interactions in the human hair follicle'. Together they form a unique fingerprint.

    Cite this