TY - JOUR
T1 - A human folliculoid microsphere assay for exploring epithelial- mesenchymal interactions in the human hair follicle
AU - Havlickova, Blanka
AU - Bíró, Tamás
AU - Mescalchin, Alessandra
AU - Tschirschmann, Miriam
AU - Mollenkopf, Hans
AU - Bettermann, Albrecht
AU - Pertile, Paolo
AU - Lauster, Roland
AU - Bodó, Enikö
AU - Paus, Ralf
PY - 2009/4
Y1 - 2009/4
N2 - The search for more effective drugs for the management of common hair growth disorders remains a top priority, both for clinical dermatology and industry. In this pilot study, we report a pragmatic organotypic assay for basic and applied hair research. The patented technique produces microdroplets, which generate human folliculoid microspheres (HFMs), consisting of human dermal papilla fibroblasts and outer root sheath keratinocytes within an extracellular matrix that simulates elements of the hair follicle mesenchyme. Studying a number of different markers (for example, proliferation, apoptosis, cytokeratin-6, versican), we show that these HFMs, cultured under well-defined conditions, retain several essential epithelial-mesenchymal interactions characteristic for human scalp hair follicle. Selected, recognized hair growth-modulatory agents modulate these parameters in a manner that suggests that HFMs allow the standardized preclinical assessment of test agents on relevant human hair growth markers under substantially simplified in vitro conditions that approximate the in vivo situation. Furthermore, we show by immunohistochemistry, reverse transcriptase-PCR, and DNA microarray techniques that HFMs also offer a useful discovery tool for the identification of target genes and their products for candidate hair drugs. HFM thus represent an instructive modern experimental and screening tool for basic and applied hair research in the human system. © 2009 The Society for Investigative Dermatology.
AB - The search for more effective drugs for the management of common hair growth disorders remains a top priority, both for clinical dermatology and industry. In this pilot study, we report a pragmatic organotypic assay for basic and applied hair research. The patented technique produces microdroplets, which generate human folliculoid microspheres (HFMs), consisting of human dermal papilla fibroblasts and outer root sheath keratinocytes within an extracellular matrix that simulates elements of the hair follicle mesenchyme. Studying a number of different markers (for example, proliferation, apoptosis, cytokeratin-6, versican), we show that these HFMs, cultured under well-defined conditions, retain several essential epithelial-mesenchymal interactions characteristic for human scalp hair follicle. Selected, recognized hair growth-modulatory agents modulate these parameters in a manner that suggests that HFMs allow the standardized preclinical assessment of test agents on relevant human hair growth markers under substantially simplified in vitro conditions that approximate the in vivo situation. Furthermore, we show by immunohistochemistry, reverse transcriptase-PCR, and DNA microarray techniques that HFMs also offer a useful discovery tool for the identification of target genes and their products for candidate hair drugs. HFM thus represent an instructive modern experimental and screening tool for basic and applied hair research in the human system. © 2009 The Society for Investigative Dermatology.
U2 - 10.1038/jid.2008.315
DO - 10.1038/jid.2008.315
M3 - Article
SN - 1523-1747
VL - 129
SP - 972
EP - 983
JO - Journal of Investigative Dermatology
JF - Journal of Investigative Dermatology
IS - 4
ER -