TY - JOUR
T1 - A mechanistic study of the electro-oxidation of bromide in acetonitrile and the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide at platinum electrodes
AU - Allen, Gary D.
AU - Buzzeo, Marisa C.
AU - Villagrán, Constanza
AU - Hardacre, Christopher
AU - Compton, Richard G.
PY - 2005/2/1
Y1 - 2005/2/1
N2 - The oxidation of bromide has been investigated by linear sweep and cyclic voltammetry at platinum electrodes in the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, ([C 4mim][NTf 2]), and the conventional aprotic solvent, acetonitrile, (MeCN). Similar voltammetry was observed in both solvents, despite their viscosities differing by more than an order of magnitude. DigiSim ® was employed to simulate the voltammetric response. The mechanism is believed to involve the direct oxidation of bromide to bromine in a heterogeneous step, followed by a homogenous reaction to form the tribromide anion:2Br-→Br2+2e-Br2+Br-→kbkfBr3-KeqAthigher potentials, the tribromide anion dissociates to bromine, Br 2, and bromide, Br -, which is immediately oxidised, leading to the emergence of a second anodic wave. Irreversible electrode kinetics were inferred from Tafel analysis and removal of the first electron is believed to be the rate-determining step in the formation of bromine. The equilibrium constant, K eq, whereKeq=[Br3-][Br2][Br-]was found to be 3 × 10 3 and 9 × 10 6 M -1 in the ionic liquid and in acetonitrile, respectively. An equilibrium constant, K complex for the complexation of 1-ethyl-3-methylimidazolium bromide in acetonitrile was found to be 35.1 M -1.
AB - The oxidation of bromide has been investigated by linear sweep and cyclic voltammetry at platinum electrodes in the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, ([C 4mim][NTf 2]), and the conventional aprotic solvent, acetonitrile, (MeCN). Similar voltammetry was observed in both solvents, despite their viscosities differing by more than an order of magnitude. DigiSim ® was employed to simulate the voltammetric response. The mechanism is believed to involve the direct oxidation of bromide to bromine in a heterogeneous step, followed by a homogenous reaction to form the tribromide anion:2Br-→Br2+2e-Br2+Br-→kbkfBr3-KeqAthigher potentials, the tribromide anion dissociates to bromine, Br 2, and bromide, Br -, which is immediately oxidised, leading to the emergence of a second anodic wave. Irreversible electrode kinetics were inferred from Tafel analysis and removal of the first electron is believed to be the rate-determining step in the formation of bromine. The equilibrium constant, K eq, whereKeq=[Br3-][Br2][Br-]was found to be 3 × 10 3 and 9 × 10 6 M -1 in the ionic liquid and in acetonitrile, respectively. An equilibrium constant, K complex for the complexation of 1-ethyl-3-methylimidazolium bromide in acetonitrile was found to be 35.1 M -1.
KW - 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide
KW - Acetonitrile
KW - Bromide
KW - Bromine
KW - Ionic liquid
UR - http://www.scopus.com/inward/record.url?scp=11444263425&partnerID=8YFLogxK
U2 - 10.1016/j.jelechem.2004.09.023
DO - 10.1016/j.jelechem.2004.09.023
M3 - Article
AN - SCOPUS:11444263425
VL - 575
SP - 311
EP - 320
JO - Journal of Electroanalytical Chemistry
JF - Journal of Electroanalytical Chemistry
SN - 1572-6657
IS - 2
ER -