A Model to Predict the Risk of Keratinocyte Carcinomas

David C Whiteman, Bridie S Thompson, Aaron P Thrift, Maria-Celia Hughes, Chiho Muranushi, Rachel E Neale, Adele C Green, Catherine M Olsen, QSkin Study

Research output: Contribution to journalArticlepeer-review


Basal cell and squamous cell carcinomas of the skin are the commonest cancers in humans, yet no validated tools exist to estimate future risks of developing keratinocyte carcinomas. To develop a prediction tool, we used baseline data from a prospective cohort study (n = 38,726) in Queensland, Australia, and used data linkage to capture all surgically excised keratinocyte carcinomas arising within the cohort. Predictive factors were identified through stepwise logistic regression models. In secondary analyses, we derived separate models within strata of prior skin cancer history, age, and sex. The primary model included terms for 10 items. Factors with the strongest effects were >20 prior skin cancers excised (odds ratio 8.57, 95% confidence interval [95% CI] 6.73-10.91), >50 skin lesions destroyed (odds ratio 3.37, 95% CI 2.85-3.99), age ≥ 70 years (odds ratio 3.47, 95% CI 2.53-4.77), and fair skin color (odds ratio 1.75, 95% CI 1.42-2.15). Discrimination in the validation dataset was high (area under the receiver operator characteristic curve 0.80, 95% CI 0.79-0.81) and the model appeared well calibrated. Among those reporting no prior history of skin cancer, a similar model with 10 factors predicted keratinocyte carcinoma events with reasonable discrimination (area under the receiver operator characteristic curve 0.72, 95% CI 0.70-0.75). Algorithms using self-reported patient data have high accuracy for predicting risks of keratinocyte carcinomas.

Original languageEnglish
Pages (from-to)1247-54
Number of pages8
JournalThe Journal of investigative dermatology
Issue number6
Publication statusPublished - Jun 2016


  • Journal Article

Research Beacons, Institutes and Platforms

  • Manchester Cancer Research Centre


Dive into the research topics of 'A Model to Predict the Risk of Keratinocyte Carcinomas'. Together they form a unique fingerprint.

Cite this