Abstract
This paper proposes a robust formation control scheme for networked multi-tilt tricopter UAVs utilizing the Negative Imaginary (NI) and Positive Real (PR) theory. A Sliding Mode Control (SMC) scheme is designed for a multi-tilt tricopter to ensure stable hovering at a desired height. Then, a modified Subspace-based system identification algorithm is devised to identify a six-by-six NI model of the inner-loop-SMC-controlled tricopter in the continuous-time domain by exploiting the Laguerre filter. A two-loop formation control scheme has been developed for networked multi-tilt tricopters where the inner loop of each tricopter applies the SMC scheme, and the outer loop implements a distributed output feedback controller that satisfies the ‘mixed’ Strictly NI (SNI) + Strictly PR (SPR) system properties. Subsequently, we have established the robustness of the proposed scheme against NI/PR-type uncertainties and sudden loss of agents. The eigenvalue loci (also known as characteristic loci) technique is used instead of the Lyapunov-based approach to prove the asymptotic stability of the formation control scheme. An in-depth simulation case study was performed on a group of six inner-loop-SMC-controlled multi-tilt tricopters connected via a network to achieve a formation control mission, even in the presence of uncertainties.
Original language | English |
---|---|
Article number | 111813 |
Journal | Automatica |
Volume | 169 |
Early online date | 10 Aug 2024 |
DOIs | |
Publication status | Published - 1 Nov 2024 |
Keywords
- Negative Imaginary (NI) systems
- Positive Real (PR) systems
- multi-tilt tricopter
- subspace-based system identification
- formation control
- characteristic loci
- Sliding mode control
- uncertainty
- loss of agents