Abstract
Tracks can potentially offer unique sources of information, providing insight into the environments, gait and posture, locomotion and behaviour. Track preservation can yield important information on substrate consistency and enable the recognition of transmitted subsurface tracks. The ability to recognize transmitted tracks has broad implications for the understanding of palaeoenvironments and interpretation of ichnological assemblages. In order to gain an understanding of how tracks are formed in three dimensions, and of their variability of expression in different substrates, controlled laboratory simulations were undertaken. Experiments were designed to recover subsurface track layers, yielding for the first time detailed information on subsurface morphology that could be related to 'true' surface track features. It was found that subsurface track relief can be correlated with the magnitude and distribution (across a foot) of load acting on the surface sediment. This pressure is transmitted through the sediment, and deforms successive layers at depth, producing an undertrack. The most significant factor controlling track morphology, whether surface or subsurface, was found to be the moisture/density relationship within the substrate at the time of track formation. Variability in the dimensions of simulated tracks, relative to the 'true' surface track, indicates that caution should be exercised when using fossil tracks to calculate hip height, speed, age, and population dynamics. In addition, comparison of experimental tracks with dinosaur tracks from the Yorkshire coast suggests that many morphological differences between vertebrate ichnotaxa reflect sediment rheology and taphonomy rather than taxonomy of the track-maker. © The Geological Society of London.
Original language | English |
---|---|
Title of host publication | Geological Society Special Publication|Geol. Soc. Spec. Publ. |
Publisher | Geological Society |
Pages | 93-123 |
Number of pages | 30 |
Volume | 228 |
DOIs | |
Publication status | Published - 2004 |