A novel image analysis technique for 2D characterization of overlapping needle-like crystals

Petros Neoptolemou, Nishank Goyal, Aurora J. Cruz-cabeza, Anton A. Kiss, David J. Milne, Thomas Vetter

Research output: Contribution to journalArticlepeer-review

124 Downloads (Pure)

Abstract

Particle size and shape significantly affect powder processing and their end-product quality in a variety of industries. Imaging methods can successfully characterize populations of needle-like particles. Prior to off-line imaging, adjusting the particle density can reduce particle overlaps but increase measurement/processing times. Discarding data of overlapping particles, as most image processing algorithms do, biases particle size and shape distributions. Building on previous efforts, we here provide an image processing technique that accurately separates and sizes overlapping needle-like particles. Our algorithm combines edge detection, layer-stripping watershed segmentation and length approximation. To test the algorithm, a large number of real particle projections were randomly overlapped with various overlap intensities. Approximately 92–72% of the particles were detected and the particles’ dimensions were characterized with an accuracy of 87–75%, with these ranges corresponding to low and high overlap intensities. Overall, the algorithm removes biases to considerably improve characterization accuracy of powders containing needle-like particles.
Original languageEnglish
JournalPowder Technology
Early online date16 Sept 2021
DOIs
Publication statusPublished - 16 Sept 2021

Fingerprint

Dive into the research topics of 'A novel image analysis technique for 2D characterization of overlapping needle-like crystals'. Together they form a unique fingerprint.

Cite this