TY - GEN
T1 - A Novel Model of Electrical Action Potentials of Teleost Fish Ventricular Myocytes
AU - Naser, Hamsa N.
AU - Whittaker, Dominic G.
AU - Shiels, Holly
AU - Boyett, Mark
AU - Zhang, Henggui
N1 - Publisher Copyright:
© 2018 Creative Commons Attribution.
PY - 2018/9
Y1 - 2018/9
N2 - Mathematical modelling, combined with experimental approaches, has become a powerful method for investigating the heart functions. So far, different models of cardiac electrical activities of variant species have been developed. However, models of fish cardiomycytes are less developed. Given the prominent problem of global warming, sea temperature changes will have a significant impact on the development of cardiac arrhythmias in the fish heart, leading to their sudden death, which may impose a heavy burden to the economy of the society. This study aimed to develop a biophysically detailed computer model for the teleost fish ventricular myocytes in warm acclimation (18 °C). A set of Hodgkin-Huxley (HH) formulations have been developed for the major ion currents that were based on experimental data from different teleost species. With a series of supra-threshold stimuli (amplitude of -41 pA/pF; duration of 10 ms and time interval (between two successive stimuli) of 1000 ms) the teleost fish model generates a successful sequence of action potentials (APs). The characteristics of the (APs) matched quantitatively the available experimental findings. In conclusion, a mathematical model for the electrical action potential of the teleost fish cardiac myocytes has been developed and validated.
AB - Mathematical modelling, combined with experimental approaches, has become a powerful method for investigating the heart functions. So far, different models of cardiac electrical activities of variant species have been developed. However, models of fish cardiomycytes are less developed. Given the prominent problem of global warming, sea temperature changes will have a significant impact on the development of cardiac arrhythmias in the fish heart, leading to their sudden death, which may impose a heavy burden to the economy of the society. This study aimed to develop a biophysically detailed computer model for the teleost fish ventricular myocytes in warm acclimation (18 °C). A set of Hodgkin-Huxley (HH) formulations have been developed for the major ion currents that were based on experimental data from different teleost species. With a series of supra-threshold stimuli (amplitude of -41 pA/pF; duration of 10 ms and time interval (between two successive stimuli) of 1000 ms) the teleost fish model generates a successful sequence of action potentials (APs). The characteristics of the (APs) matched quantitatively the available experimental findings. In conclusion, a mathematical model for the electrical action potential of the teleost fish cardiac myocytes has been developed and validated.
UR - http://www.scopus.com/inward/record.url?scp=85068768709&partnerID=8YFLogxK
U2 - 10.22489/CinC.2018.032
DO - 10.22489/CinC.2018.032
M3 - Conference contribution
AN - SCOPUS:85068768709
T3 - Computing in Cardiology
BT - Computing in Cardiology Conference, CinC 2018
PB - IEEE Computer Society
T2 - 45th Computing in Cardiology Conference, CinC 2018
Y2 - 23 September 2018 through 26 September 2018
ER -