Abstract
Simulating the appearance of woven fabrics is challenging due to the complex interplay of lighting between the constituent yarns and fibers. Conventional surface-based models lack the fidelity and details for producing realistic close-up renderings. Micro-appearance models, on the other hand, can produce highly detailed renderings by depicting fabrics fiber-by-fiber, but become expensive when handling large pieces of clothing. Further, neither surface-based nor micro-appearance model has not been shown in practice to match measurements of complex anisotropic reflection and transmission simultaneously.
In this paper, we introduce a practical appearance model for woven fabrics. We model the structure of a fabric at the ply level and simulate the local appearance of fibers making up each ply. Our model accounts for both reflection and transmission of light and is capable of matching physical measurements better than prior methods including fiber based techniques. Compared to existing micro-appearance models, our model is light-weight and scales to large pieces of clothing.
In this paper, we introduce a practical appearance model for woven fabrics. We model the structure of a fabric at the ply level and simulate the local appearance of fibers making up each ply. Our model accounts for both reflection and transmission of light and is capable of matching physical measurements better than prior methods including fiber based techniques. Compared to existing micro-appearance models, our model is light-weight and scales to large pieces of clothing.
Original language | English |
---|---|
Article number | 251 |
Journal | ACM Transactions on Graphics |
Volume | 39 |
Issue number | 6 |
DOIs | |
Publication status | Published - 26 Nov 2020 |
Keywords
- cloth modeling
- cloth rendering