A rapidly trainable and global illumination invariant object detection system

Sri Kaushik Pavani*, David Delgado-Gomez, Alejandro F. Frangi

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

Abstract

This paper addresses the main difficulty in adopting Viola- Jones-type object detection systems: their training time. Large training times are the result of having to repeatedly evaluate thousands of Haarlike features (HFs) in a database of object and clutter class images. The proposed object detector is fast to train mainly because of three reasons. Firstly, classifiers that exploit a clutter (non-object) model are used to build the object detector and, hence, they do not need to evaluate clutter images during training. Secondly, the redundant HFs are heuristically pre-eliminated from the feature pool to obtain a small set of independent features. Thirdly, classifiers that have fewer parameters to be optimized are used to build the object detector. As a result, they are faster to train than their traditional counterparts. Apart from faster training, an additional advantage of the proposed detector is that its output is invariant to global illumination changes. Our results indicate that if the object class does not exhibit substantial intra-class variation, then the proposed method can be used to build accurate and real-time object detectors whose training time is in the order of seconds. The quick training and testing speed of the proposed system makes it ideal for use in content-based image retrieval applications.

Original languageEnglish
Title of host publicationProgress in Pattern Recognition, Image Analysis, Computer Vision and Applications - 14th Iberoamerican Conference on Pattern Recognition, CIARP 2009, Proceedings
Pages877-884
Number of pages8
DOIs
Publication statusPublished - 2009
Event14th Iberoamerican Conference on Pattern Recognition, CIARP 2009 - Guadalajara, Jalisco, Mexico
Duration: 15 Nov 200918 Nov 2009

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume5856 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference14th Iberoamerican Conference on Pattern Recognition, CIARP 2009
Country/TerritoryMexico
CityGuadalajara, Jalisco
Period15/11/0918/11/09

Fingerprint

Dive into the research topics of 'A rapidly trainable and global illumination invariant object detection system'. Together they form a unique fingerprint.

Cite this