TY - JOUR
T1 - A review of the role of bioenergy modelling in renewable energy research & policy development
AU - Welfle, Andrew
AU - Thornley, Patricia
AU - Röder, Mirjam
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2020/5/1
Y1 - 2020/5/1
N2 - Transition towards renewable low carbon energy is a fundamental element of climate change mitigation, energy from biomass technologies are targeted within many country's decarbonisation strategies. Decision makers globally face many challenges developing strategies to drive this transition; models are increasingly used to road-test policy interventions before their implemented. A Bioenergy Literature Database was developed of 124,285 papers published 2000–2018. These document an exponential rise in research focusing on biomass and bioenergy. On average 35.4% of papers apply modelling analyses, 99.5% of these use bespoke models rather than high profile Integrated Assessment Models (IAMs) or Energy System Models – although it is these high profile models that are widely used in policy development. A review of the role of bioenergy within energy models is undertaken with a key objective of critiquing their performances in analysing bioenergy research questions. IAMs are found to be widely applied to investigate the impact of bioenergy within wider energy and environmental systems, e.g. for reducing emissions. Energy System Models focus on bioenergy processes, technologies and feedstocks, although don't capture wider environmental, economic and social themes. Specialist Bioenergy Models offer methods for bespoke analyses of all bioenergy issues, their narrow system boundaries generate targeted outputs but wider effects such as land-use change may not be captured. Caution is required when interpreting modelling outputs, particularly when used to inform policy. It's not feasible to develop all-encompassing bioenergy models covering all nuances between systems, but there is strong argument for using multiple models in parallel to build robust overall conclusions.
AB - Transition towards renewable low carbon energy is a fundamental element of climate change mitigation, energy from biomass technologies are targeted within many country's decarbonisation strategies. Decision makers globally face many challenges developing strategies to drive this transition; models are increasingly used to road-test policy interventions before their implemented. A Bioenergy Literature Database was developed of 124,285 papers published 2000–2018. These document an exponential rise in research focusing on biomass and bioenergy. On average 35.4% of papers apply modelling analyses, 99.5% of these use bespoke models rather than high profile Integrated Assessment Models (IAMs) or Energy System Models – although it is these high profile models that are widely used in policy development. A review of the role of bioenergy within energy models is undertaken with a key objective of critiquing their performances in analysing bioenergy research questions. IAMs are found to be widely applied to investigate the impact of bioenergy within wider energy and environmental systems, e.g. for reducing emissions. Energy System Models focus on bioenergy processes, technologies and feedstocks, although don't capture wider environmental, economic and social themes. Specialist Bioenergy Models offer methods for bespoke analyses of all bioenergy issues, their narrow system boundaries generate targeted outputs but wider effects such as land-use change may not be captured. Caution is required when interpreting modelling outputs, particularly when used to inform policy. It's not feasible to develop all-encompassing bioenergy models covering all nuances between systems, but there is strong argument for using multiple models in parallel to build robust overall conclusions.
KW - Bioenergy
KW - Models
KW - Energy system models
KW - Integrated assessment models
KW - Policy development
KW - Review
UR - http://www.scopus.com/inward/record.url?scp=85082579316&partnerID=8YFLogxK
U2 - 10.1016/j.biombioe.2020.105542
DO - 10.1016/j.biombioe.2020.105542
M3 - Article
SN - 0961-9534
VL - 136
SP - 105542
JO - Biomass and Bioenergy
JF - Biomass and Bioenergy
M1 - 105542
ER -