A Sparse Bayesian Approach to the Identification of Nonlinear State-Space Systems

Wei Pan, Ye Yuan, Jorge Gonçalves, Guy Bart Stan

Research output: Contribution to journalArticlepeer-review

Abstract

This technical note considers the identification of nonlinear discrete-time systems with additive process noise but without measurement noise. In particular, we propose a method and its associated algorithm to identify the system nonlinear functional forms and their associated parameters from a limited number of time-series data points. For this, we cast this identification problem as a sparse linear regression problem and take a Bayesian viewpoint to solve it. As such, this approach typically leads to nonconvex optimizations. We propose a convexification procedure relying on an efficient iterative re-weighted ℓ1-minimization algorithm that uses general sparsity inducing priors on the parameters of the system and marginal likelihood maximisation. Using this approach, we also show how convex constraints on the parameters can be easily added to the proposed iterative re-weighted ℓ1-minimization algorithm. In the supplementary material available online (arXiv:1408.3549), we illustrate the effectiveness of the proposed identification method on two classical systems in biology and physics, namely, a genetic repressilator network and a large scale network of interconnected Kuramoto oscillators.

Original languageEnglish
Pages (from-to)182-187
Number of pages6
JournalIEEE Transactions on Automatic Control
Volume61
Issue number1
DOIs
Publication statusPublished - Jan 2016

Keywords

  • Nonlinear System Identification
  • Re-weighted ℓ-Minimisation
  • Sparse Bayesian Learning

Fingerprint

Dive into the research topics of 'A Sparse Bayesian Approach to the Identification of Nonlinear State-Space Systems'. Together they form a unique fingerprint.

Cite this