Abstract
Integrin adhesion receptors are structurally dynamic proteins that adopt a number of functionally relevant conformations. We have produced a conformation-dependent anti-α5 monoclonal antibody (SNAKA51) that converts α5β1 integrin into a ligand-competent form and promotes fibronectin binding. In adherent fibroblasts, SNAKA51 preferentially bound to integrins in fibrillar adhesions. Clustering of integrins expressing this activation epitope induced directional translocation of α5β1, mimicking fibrillar adhesion formation. Priming of α5β1 integrin by SNAKA51 increased the accumulation of detergent-resistant fibronectin in the extracellular matrix, thus identifying an integrin conformation that promotes matrix assembly. The SNAKA51 epitope was mapped to the calf-1/calf-2 domains. We propose that the action of the antibody causes the legs of the integrin to change conformation and thereby primes the integrin to bind ligand. These findings identify SNAKA51 as the first anti-integrin antibody to selectively recognize a subset of adhesion contacts, and they identify an integrin conformation associated with integrin translocation and fibronectin matrix formation.
Original language | English |
---|---|
Pages (from-to) | 291-300 |
Number of pages | 9 |
Journal | Journal of Cell Science |
Volume | 118 |
Issue number | 2 |
DOIs | |
Publication status | Published - 15 Jan 2005 |
Keywords
- Conformation
- Fibronectin
- Integrin
- Matrix assembly
- Monoclonal antibody