Abstract
One of the current limitations surrounding surface-enhanced Raman scattering (SERS) is the perceived lack of reproducibility. SERS is indeed challenging, and for analyte detection, it is vital that the analyte interacts with the metal surface. However, as this is analyte dependent, there is not a single set of SERS conditions that are universal. This means that experimental optimisation for optimum SERS response is vital. Most researchers optimise one factor at a time, where a single parameter is altered first before going onto optimise the next. This is a very inefficient way of searching the experimental landscape. In this review, we explore the use of more powerful multivariate approaches to SERS experimental optimisation based on design of experiments and evolutionary computational methods. We particularly focus on colloidal-based SERS rather than thin film preparations as a result of their popularity. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons, Ltd.
Original language | English |
---|---|
Pages (from-to) | 59-66 |
Journal | Journal of Raman Spectroscopy |
Volume | 47 |
Issue number | 1 |
DOIs | |
Publication status | Published - 16 Dec 2016 |
Keywords
- SERS;chemometrics;optimisation;design of experiment;genetic algorithm