TY - JOUR
T1 - Action versus animal naming fluency in subcortical dementia, frontal dementias, and Alzheimer's disease
AU - Davis, C.
AU - Heidler-Gary, J.
AU - Gottesman, R. F.
AU - Crinion, J.
AU - Newhart, M.
AU - Moghekar, A.
AU - Soloman, D.
AU - Rigamonti, D.
AU - Cloutman, L.
AU - Hillis, A. E.
PY - 2010/6
Y1 - 2010/6
N2 - Accumulating evidence indicates action naming may rely more on frontal-subcortical circuits, and noun naming may rely more on temporal cortex. Therefore, noun versus action fluency might distinguish frontal and subcortical dementias from cortical dementias primarily affecting temporal and/or parietal cortex such as Alzheimer's disease (AD). We hypothesized patients with subcortical dementia, e.g., normal pressure hydrocephalus (NPH) and patients with dementias predominantly affecting frontal cortex, e.g., behavioral variant frontotemporal dementia (bv-FTD) and progressive nonfluent aphasia (PNFA) have more difficulty on action fluency versus noun fluency (e.g., animal naming). Patients with AD, who have temporo parietal cortical dysfunction, should have more difficulty on noun versus verb fluency. A total of 234 participants, including healthy controls (n = 20) and patients diagnosed with NPH (n =144), AD (n = 33), bv-FTD (n = 22) or PNFA (n =15) were administered animal fluency, action fluency, and letter fluency tasks, and the Mini-Mental State Examination (MMSE, to control for dementia severity). NPH and bv-FTD/PNFA patients had significantly higher MMSE scores and animal fluency than AD patients (after adjusting for age), but their action fluency tended to be lower than in AD. Only NPH and bvFTD/PNFA patients showed significantly lower action verb than animal fluency. Results provide novel evidence that action naming relies more on frontal-subcortical circuits while noun naming relies more on temporoparietal cortex, indicating action verb fluency may be more sensitive than noun fluency, particularly for detecting frontal-subcortical dysfunction. © 2010 Psychology Press.
AB - Accumulating evidence indicates action naming may rely more on frontal-subcortical circuits, and noun naming may rely more on temporal cortex. Therefore, noun versus action fluency might distinguish frontal and subcortical dementias from cortical dementias primarily affecting temporal and/or parietal cortex such as Alzheimer's disease (AD). We hypothesized patients with subcortical dementia, e.g., normal pressure hydrocephalus (NPH) and patients with dementias predominantly affecting frontal cortex, e.g., behavioral variant frontotemporal dementia (bv-FTD) and progressive nonfluent aphasia (PNFA) have more difficulty on action fluency versus noun fluency (e.g., animal naming). Patients with AD, who have temporo parietal cortical dysfunction, should have more difficulty on noun versus verb fluency. A total of 234 participants, including healthy controls (n = 20) and patients diagnosed with NPH (n =144), AD (n = 33), bv-FTD (n = 22) or PNFA (n =15) were administered animal fluency, action fluency, and letter fluency tasks, and the Mini-Mental State Examination (MMSE, to control for dementia severity). NPH and bv-FTD/PNFA patients had significantly higher MMSE scores and animal fluency than AD patients (after adjusting for age), but their action fluency tended to be lower than in AD. Only NPH and bvFTD/PNFA patients showed significantly lower action verb than animal fluency. Results provide novel evidence that action naming relies more on frontal-subcortical circuits while noun naming relies more on temporoparietal cortex, indicating action verb fluency may be more sensitive than noun fluency, particularly for detecting frontal-subcortical dysfunction. © 2010 Psychology Press.
KW - Alzheimer's disease
KW - Category fluency
KW - Frontotemporal dementia
KW - Progressive nonfluent aphasia
KW - Semantic fluency
KW - Subcortical dementia
KW - Verb naming
U2 - 10.1080/13554790903456183
DO - 10.1080/13554790903456183
M3 - Article
SN - 1465-3656
VL - 16
SP - 259
EP - 266
JO - Neurocase
JF - Neurocase
IS - 3
ER -