Advanced 3D characterisation of iodine induced stress corrosion cracks in zirconium alloys

Conor Gillen, Alistair Garner, Adam Plowman, Christopher Race, Tristan Lowe, Christopher Jones, Katie Moore, Philipp Frankel

Research output: Contribution to journalArticlepeer-review


In this study, a range of advanced techniques have been used to characterise iodine-induced stress corrosion cracks, and investigate their interaction with microstructure in zirconium alloys used as cladding material in nuclear power reactors. C-ring samples, machined from cladding tubes in a recrystallised and cold worked condition, were subjected to compressive stress while submerged in an iodine-ethanol solution to simulate stress corrosion cracks arising from pellet cladding interaction. The complex morphology of these stress corrosion cracks was imaged in 3D using X-ray computed tomography (XCT), and subsequent analysis using both 2D and 3D electron backscatter diffraction (EBSD) allowed for the interaction of these cracks with microstructure to be investigated. Intergranular cracking modes were observed to dominate in the recrystallised microstructure, resulting in cracking in the radial direction with variations on the order of the grain size. Crack propagation in the cold worked microstructure was observed to be correlated with the direction of the elongated grains, resulting in a more tangential crack path with less local variation and a microstructure potentially more susceptible to iodine-induced stress corrosion cracking. 3D-EBSD using serial sectioning allows for the determination of the full five-parameter grain boundary description, and opens up the possibility of a statistical analysis of susceptible boundaries to SCC. Nanoscale secondary ion mass spectrometry (NanoSIMS) was also used to map the chemical distribution in the crack tip region and provides possible evidence of iodine segregation ahead of the crack tip. The results provide new insight into crack propagation mechanisms in recrystallised and cold worked microstructures, and pave the way for a more mechanistic understanding of crack propagation through advanced characterisation of iodine-induced stress corrosion cracks in zirconium alloys.
Original languageEnglish
Pages (from-to)348-361
JournalMaterials Characterization
Early online date23 Apr 2018
Publication statusPublished - Jul 2018


  • Zirconium
  • SCC
  • Pellet cladding interaction
  • serial sectioning
  • X-ray computed tomography;
  • NanoSIMS

Research Beacons, Institutes and Platforms

  • Dalton Nuclear Institute


Dive into the research topics of 'Advanced 3D characterisation of iodine induced stress corrosion cracks in zirconium alloys'. Together they form a unique fingerprint.

Cite this