Aerosol fluxes and particle growth above managed grassland

E. Nemitz, J. R. Dorsey, M. J. Flynn, M. W. Gallagher, A. Hensen, J. W. Erisman, S. M. Owen, U. Dämmgen, M. A. Sutton

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Particle deposition velocities (11ĝ€"3000 nm diameter) measured above grassland by eddy covariance during the EU GRAMINAE experiment in June 2000 averaged 0.24 and 0.03 mm s−1 to long (0.75 m) and short (0.07 m) grass, respectively. After fertilisation with 108 kg N ha−1 as calcium ammonium nitrate, sustained apparent upward fluxes of particles were observed. Analysis of concentrations and fluxes of potential precursor gases, including NH3, HNO3, HCl and selected VOCs, shows that condensation of HNO3 and NH3 on the surface of existing particles is responsible for this effect. A novel approach is developed to derive particle growth rates at the field scale, from a combination of measurements of vertical fluxes and particle size-distributions. For the first 9 days after fertilization, growth rates of 11 nm particles of 7.04 nm hr−1 and 1.68 nm hr−1 were derived for day and night-time conditions, respectively. This implies total NH4NO3 production rates of 1.11 and 0.44 μgm. 3 h1, respectively. The effect translates into a small error in measured ammonia fluxes (0.06% day, 0.56% night) and a large error in NH+4 and NO3 aerosol fluxes of 3.6% and 10%, respectively. By converting rapidly exchanged NH3 and HNO3 into slowly depositing NH4NO3, the reaction modifies the total N budget, though this effect is small (≤1% for the 10 days following fertilization), as NH3 emission dominates the net flux. It is estimated that 3.8% of the fertilizer N was volatilised as NH3, of which 0.05% re-condensed to form NH4NO3 particles within the lowest 2m of the surface layer. This surface induced process would at least scale up to a global NH4NO3 formation of ca. 0.21 ktNyr-1 from NH4NO3 fertilisers and potentially 45 ktNyr-1 from NH3 emissions in general.
    Original languageEnglish
    Pages (from-to)1627-1645
    Number of pages18
    JournalBiogeosciences
    Volume6
    Issue number8
    DOIs
    Publication statusPublished - 2009

    Fingerprint

    Dive into the research topics of 'Aerosol fluxes and particle growth above managed grassland'. Together they form a unique fingerprint.

    Cite this