Aggregation and sedimentation of shattered graphene oxide nanoparticles (SGO) in dynamic environments: a solid-body rotational approach

Peyman Babakhani, Jonathan William Bridge, Tanapon Phenrat, Ruey-an Doong, Karl Whittle

Research output: Contribution to journalArticlepeer-review

Abstract

Nanoparticle (NP) aggregation is typically investigated in either quiescent or turbulent mixing conditions; neither is fully representative of dynamic natural environments. In groundwater, complex interacting influences of advective–diffusive transport, pore tortuosity, and the arrival of aggregates from up-gradient pores impacts the aggregation behaviour of NPs, whereas in surface waters, continuous mixing of fresh particle and aged aggregate populations amends aggregation rates. To mimic such conditions, a cylinder reactor containing shattered graphene oxide NP (<100 nm) suspension was set to rotate with a Reynolds number (Re) close to one and with zero shear. Two main aggregation phases were then observed. Up to 250–350 min, NP remained near the rotational axis longer than in static conditions, giving rise to higher aggregation rates interpreted as an enhanced perikinetic aggregation and differential sedimentation due to mixing with resuspending aggregates. In this phase, a population-balance model estimated an attachment efficiency >5 times in the rotating system than in the static system. Later (5–13 h) aggregates collided with extensively each other, broke, and reformed on the rotating cylinder wall giving rise to larger, denser aggregates (>1 cm). These results thus shed new light on the differences in aggregation behaviour between porous media and other natural environmental systems compared to quiescent batch experiments.
Original languageEnglish
Pages (from-to)1859-1872
Number of pages14
JournalEnvironmental Science: Nano
Volume5
Issue number8
DOIs
Publication statusPublished - 2018

Fingerprint

Dive into the research topics of 'Aggregation and sedimentation of shattered graphene oxide nanoparticles (SGO) in dynamic environments: a solid-body rotational approach'. Together they form a unique fingerprint.

Cite this