TY - JOUR
T1 - Air pollution measurement errors: is your data fit for purpose?
AU - Diez, Sebastian
AU - Lacy, Stuart E.
AU - Bannan, Thomas J
AU - Flynn, Michael
AU - Gardiner, Tom
AU - Harrison, David
AU - Marsden, Nicholas
AU - Martin, Nicholas A.
AU - Read, Katie
AU - Edwards, Peter M.
N1 - Funding Information:
This research has been supported by UK Research and Innovation (grant no. NE/T00195X/1).
Funding Information:
Acknowledgements. This work was funded as part of the UKRI Strategic Priorities Fund Clean Air program, with support from Defra. We thank the OSCA team (Integrated Research Observation System for Clean Air) at the Manchester Air Quality Super-site (MAQS) for help in data collection for the regulatory grade instruments. The secondary research grade instruments used here (Thermo ozone 49i, 2B Technologies 202 ozone and Teledyne T200U NOx) are provided through the Atmospheric Measurement and Observation Facility (AMOF) and the calibrations were carried out in the COZI Laboratory, a facility housed at the Wolfson Atmospheric Chemistry Laboratories (WACL); both funded through the National Centre for Atmospheric Science (NCAS). Special thanks to Elena Martin Arenos, Chris Anthony, Killian Murphy, Stuart Young, Steve Andrews and Jenny Hudson-Bell from WACL for the help and support with the project. Also, thanks to Stuart Murray and Chris Rhodes from the Department of Chemistry Workshop at the University of York for their technical assistance and advice. Finally, thanks to Andrew Gillah and Michael Golightly from the York Council who assisted with site access.
Publisher Copyright:
Copyright © 2022 Sebastian Diez et al.
PY - 2022/7/13
Y1 - 2022/7/13
N2 - When making measurements of air quality, having a reliable estimate of the measurement uncertainty is key to assessing the information content that an instrument is capable of providing, and thus its usefulness in a particular application. This is especially important given the widespread emergence of low cost sensors (LCS) to measure air quality. To do this, end users need to clearly identify the data requirements a priori and design quantifiable success criteria by which to judge the data. All measurements suffer from errors, with the degree to which these errors impact the accuracy of the final data often determined by our ability to identify and correct for them. The advent of LCS has provided a challenge in that many error sources show high spatial and temporal variability, making laboratory derived corrections difficult. Characterising LCS performance thus currently depends primarily on colocation studies with reference instruments, which are very expensive and do not offer a definitive solution but rather a glimpse of LCS performance in specific conditions over a limited period of time. Despite the limitations, colocation studies do provide useful information on measurement device error structure, but the results are non-trivial to interpret and often difficult to extrapolate to future device performance. A problem that obscures much of the information content of these colocation performance assessments is the exacerbated use of global performance metrics (R2, RMSE, MAE, etc.). Colocation studies are complex and time-consuming, and it is easy to fall into the temptation to only use these metrics when trying to define the most appropriate sensor technology to subsequently use. But the use of these metrics can be limited, and even misleading, restricting our understanding of the error structure and therefore the measurements' information content. In this work, the nature of common air pollution measurement errors is investigated, and the implications they have on traditional metrics and other empirical, potentially more insightful approaches to assess measurement performance. With this insight we demonstrate the impact these errors can have on measurements, using a selection of LCS deployed alongside reference measurements as part of the QUANT project, and discuss the implications this has on device end use.
AB - When making measurements of air quality, having a reliable estimate of the measurement uncertainty is key to assessing the information content that an instrument is capable of providing, and thus its usefulness in a particular application. This is especially important given the widespread emergence of low cost sensors (LCS) to measure air quality. To do this, end users need to clearly identify the data requirements a priori and design quantifiable success criteria by which to judge the data. All measurements suffer from errors, with the degree to which these errors impact the accuracy of the final data often determined by our ability to identify and correct for them. The advent of LCS has provided a challenge in that many error sources show high spatial and temporal variability, making laboratory derived corrections difficult. Characterising LCS performance thus currently depends primarily on colocation studies with reference instruments, which are very expensive and do not offer a definitive solution but rather a glimpse of LCS performance in specific conditions over a limited period of time. Despite the limitations, colocation studies do provide useful information on measurement device error structure, but the results are non-trivial to interpret and often difficult to extrapolate to future device performance. A problem that obscures much of the information content of these colocation performance assessments is the exacerbated use of global performance metrics (R2, RMSE, MAE, etc.). Colocation studies are complex and time-consuming, and it is easy to fall into the temptation to only use these metrics when trying to define the most appropriate sensor technology to subsequently use. But the use of these metrics can be limited, and even misleading, restricting our understanding of the error structure and therefore the measurements' information content. In this work, the nature of common air pollution measurement errors is investigated, and the implications they have on traditional metrics and other empirical, potentially more insightful approaches to assess measurement performance. With this insight we demonstrate the impact these errors can have on measurements, using a selection of LCS deployed alongside reference measurements as part of the QUANT project, and discuss the implications this has on device end use.
KW - Air quality
KW - Pollution
KW - Instrumentation
U2 - 10.5194/amt-15-4091-2022
DO - 10.5194/amt-15-4091-2022
M3 - Article
SN - 1867-1381
VL - 15
SP - 4091
EP - 4105
JO - Atmospheric Measurement Techniques
JF - Atmospheric Measurement Techniques
IS - 13
ER -