TY - JOUR
T1 - Airborne Bacterial and Eukaryotic Community Structure across the United Kingdom Revealed by High-Throughput Sequencing
AU - Gallagher, Martin
AU - Crawford, Ian
AU - Topping, David
AU - Lloyd, Jonathan
AU - Allen, Grant
AU - Bower, Keith
AU - Boothman, Christopher
AU - Robinson, Clare
AU - Song, Ho-Kyung
N1 - Funding Information:
Funding: The authors acknowledge the support of NERC via grant NE/S002049/1.
Funding Information:
Acknowledgments: Airborne data were obtained using the BAe-146-301 Atmospheric Research Aircraft [ARA] flown by Airtask Ltd., and managed by the FAAM Airborne Laboratory, jointly operated by UKRI and the National Centre for Atmospheric Science. The staff of FAAM and Airtask Ltd., and in particular their pilots, are thanked for their dedication in making the flight a success. Hokyung Song and Ian Crawford were funded by the NERC grant BIOARC, NE/S002049/1. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and READY website (https://www.ready.noaa.gov) used in this publication.
Publisher Copyright:
© 2020 by the authors.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/8/1
Y1 - 2020/8/1
N2 - Primary biological aerosols often include allergenic and pathogenic microorganisms posing potential risks to human health. Moreover, there are airborne plant and animal pathogens that may have ecological and economic impact. In this study, we used high-throughput sequencing techniques (Illumina, MiSeq) targeting the 16S rRNA genes of bacteria and the 18S rRNA genes of eukaryotes, to characterize airborne primary biological aerosols. We used a filtration system on the UK Facility for Airborne Atmospheric Measurements (FAAM) research aircraft to sample a range of primary biological aerosols across southern England overflying surface measurement sites from Chilbolton to Weybourne. We identified 30 to 60 bacterial operational taxonomic units (OTUs) and 108 to 224 eukaryotic OTUs per sample. Moreover, 16S rRNA gene sequencing identified significant numbers of genera that have not been found in atmospheric samples previously or only been described in limited number of atmospheric field studies, which are rather old or published in local journals. This includes the genera Gordonia, Lautropia, and Psychroglaciecola. Some of the bacterial genera found in this study include potential human pathogens, for example, Gordonia, Sphingomonas, Chryseobacterium, Morganella, Fusobacterium, and Streptococcus. 18S rRNA gene sequencing showed Cladosporium to be the major genus in all of the samples, which is a well-known allergen and often found in the atmosphere. There were also genetic signatures of potentially allergenic taxa; for example, Pleosporales, Phoma, and Brassicales. Although there was no significant clustering of bacterial and eukaryotic communities depending on the sampling location, we found meteorological factors explaining significant variations in the community composition. The findings in this study support the application of DNA-based sequencing technologies for atmospheric science studies in combination with complementary spectroscopic and microscopic techniques for improved identification of primary biological aerosols.
AB - Primary biological aerosols often include allergenic and pathogenic microorganisms posing potential risks to human health. Moreover, there are airborne plant and animal pathogens that may have ecological and economic impact. In this study, we used high-throughput sequencing techniques (Illumina, MiSeq) targeting the 16S rRNA genes of bacteria and the 18S rRNA genes of eukaryotes, to characterize airborne primary biological aerosols. We used a filtration system on the UK Facility for Airborne Atmospheric Measurements (FAAM) research aircraft to sample a range of primary biological aerosols across southern England overflying surface measurement sites from Chilbolton to Weybourne. We identified 30 to 60 bacterial operational taxonomic units (OTUs) and 108 to 224 eukaryotic OTUs per sample. Moreover, 16S rRNA gene sequencing identified significant numbers of genera that have not been found in atmospheric samples previously or only been described in limited number of atmospheric field studies, which are rather old or published in local journals. This includes the genera Gordonia, Lautropia, and Psychroglaciecola. Some of the bacterial genera found in this study include potential human pathogens, for example, Gordonia, Sphingomonas, Chryseobacterium, Morganella, Fusobacterium, and Streptococcus. 18S rRNA gene sequencing showed Cladosporium to be the major genus in all of the samples, which is a well-known allergen and often found in the atmosphere. There were also genetic signatures of potentially allergenic taxa; for example, Pleosporales, Phoma, and Brassicales. Although there was no significant clustering of bacterial and eukaryotic communities depending on the sampling location, we found meteorological factors explaining significant variations in the community composition. The findings in this study support the application of DNA-based sequencing technologies for atmospheric science studies in combination with complementary spectroscopic and microscopic techniques for improved identification of primary biological aerosols.
KW - bioaerosol
KW - microbial community
KW - airborne
KW - high-throughput sequencing
KW - health
KW - UK
KW - Biome
UR - https://doi.org/10.3390/atmos11080802
U2 - 10.3390/atmos11080802
DO - 10.3390/atmos11080802
M3 - Article
SN - 2073-4433
VL - 11
SP - 802
JO - Atmosphere
JF - Atmosphere
IS - 8
M1 - 11(8), 802
ER -