Airborne observations of IEPOX-derived isoprene SOA in the Amazon during SAMBBA

James Allan, W T Morgan, E Darbyshire, M J Flynn, P I Williams, D E Oram, P Artaxo, J Brito, J D Lee, Hugh Coe

    Research output: Contribution to journalArticlepeer-review


    Isoprene is a potentially highly significant but currently poorly quantified source of secondary organic aerosols (SOA). This is especially important in the tropics, where large rainforests act as significant sources of isoprene. Methylfuran, produced through thermal decomposition during analysis, has recently been suggested as a marker for isoprene SOA formation through the isoprene epoxydiol (IEPOX) route, which mostly occurs under low NOx conditions. This is manifested as a peak at m/z = 82 in Aerodyne Aerosol Mass Spectrometer (AMS) data. Here we present a study of this marker measured during five flights over the Amazon rainforest on board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft during the South American Biomass Burning Analysis (SAMBBA) campaign. Cases where this marker is and is not present are contrasted and linked to the presence of acidic seed particles, lower NOx concentrations and higher humidities. There are also data to suggest a role of organic nitrogen in the particulate composition. Furthermore, an inspection of the vertical trends of the marker indicates that concentrations are highest at the top of the boundary layer (possibly due to semivolatile repartitioning) and that upwards through the free troposphere, the mass spectral profile evolves towards that of low volatility oxygenated aerosol. These observations offer insights into the behaviour of IEPOX-derived SOA formation above the Amazon rainforest and the suitability of methylfuran as a marker for this process.
    Original languageEnglish
    Pages (from-to)11393-11407
    Number of pages15
    JournalAtmospheric Chemistry and Physics
    Issue number20
    Publication statusPublished - 2014


    Dive into the research topics of 'Airborne observations of IEPOX-derived isoprene SOA in the Amazon during SAMBBA'. Together they form a unique fingerprint.

    Cite this