Abstract
Late-stage functionalization of natural products offers an elegant route to create novel entities in a relevant biological target space. In this context, enzymes capable of halogenating sp 3 carbons with high stereo- and regiocontrol under benign conditions have attracted particular attention. Enabled by a combination of smart library design and machine learning, we engineer the iron/α-ketoglutarate dependent halogenase WelO5* for the late-stage functionalization of the complex and chemically difficult to derivatize macrolides soraphen A and C, potent anti-fungal agents. While the wild type enzyme WelO5* does not accept the macrolide substrates, our engineering strategy leads to active halogenase variants and improves upon their apparent k cat and total turnover number by more than 90-fold and 300-fold, respectively. Notably, our machine-learning guided engineering approach is capable of predicting more active variants and allows us to switch the regio-selectivity of the halogenases facilitating the targeted analysis of the derivatized macrolides’ structure-function activity in biological assays.
Original language | English |
---|---|
Article number | 371 |
Journal | Nature Communications |
Volume | 13 |
Issue number | 1 |
DOIs | |
Publication status | Published - 18 Jan 2022 |
Keywords
- Algorithms
- Biocatalysis
- Biotransformation
- Fungi/physiology
- Halogenation
- Macrolides/chemistry
- Models, Molecular
- Oxidoreductases/chemistry
- Protein Engineering