Alternating pressure (active) air surfaces for preventing pressure ulcers

Chunhu Shi, Jo C Dumville, Nicky Cullum, Sarah Rhodes, Asmara Jammali-blasi, Elizabeth Mcinnes

Research output: Contribution to journalArticlepeer-review

666 Downloads (Pure)

Abstract

BackgroundPressure ulcers (also known as pressure injuries, pressure sores, decubitus ulcers and bed sores) are localised injuries to the skin or underlying soft tissue, or both, caused by unrelieved pressure, shear or friction. Alternating pressure (active) air surfaces are widely used with the aim of preventing pressure ulcers.
ObjectivesTo assess the effects of alternating pressure (active) air surfaces (beds, mattresses or overlays) compared with any support surface on the incidence of pressure ulcers in any population in any setting.
Search methodsIn November 2019, we searched the Cochrane Wounds Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE (including In‐Process & Other Non‐Indexed Citations); Ovid Embase and EBSCO CINAHL Plus. We also searched clinical trials registries for ongoing and unpublished studies, and scanned reference lists of relevant included studies as well as reviews, meta‐analyses and health technology reports to identify additional studies. There were no restrictions with respect to language, date of publication or study setting.
Selection criteriaWe included randomised controlled trials that allocated participants of any age to alternating pressure (active) air beds, overlays or mattresses. Comparators were any beds, overlays or mattresses.
Data collection and analysisAt least two review authors independently assessed studies using predetermined inclusion criteria. We carried out data extraction, 'Risk of bias' assessment using the Cochrane 'Risk of bias' tool, and the certainty of the evidence assessment according to Grading of Recommendations, Assessment, Development and Evaluations methodology.
Main resultsWe included 32 studies (9058 participants) in the review. Most studies were small (median study sample size: 83 participants). The average age of participants ranged from 37.2 to 87.0 years (median: 69.1 years). Participants were largely from acute care settings (including accident and emergency departments). We synthesised data for six comparisons in the review: alternating pressure (active) air surfaces versus: foam surfaces, reactive air surfaces, reactive water surfaces, reactive fibre surfaces, reactive gel surfaces used in the operating room followed by foam surfaces used on the ward bed, and another type of alternating pressure air surface. Of the 32 included studies, 25 (78.1%) presented findings which were considered at high overall risk of bias.
Primary outcome: pressure ulcer incidence
Alternating pressure (active) air surfaces may reduce the proportion of participants developing a new pressure ulcer compared with foam surfaces (risk ratio (RR) 0.63, 95% confidence interval (CI) 0.34 to 1.17; I2 = 63%; 4 studies, 2247 participants; low‐certainty evidence). Alternating pressure (active) air surfaces applied on both operating tables and hospital beds may reduce the proportion of people developing a new pressure ulcer compared with reactive gel surfaces used on operating tables followed by foam surfaces applied on hospital beds (RR 0.22, 95% CI 0.06 to 0.76; I2 = 0%; 2 studies, 415 participants; low‐certainty evidence).
It is uncertain whether there is a difference in the proportion of people developing new pressure ulcers between alternating pressure (active) air surfaces and the following surfaces, as all these comparisons have very low‐certainty evidence: (1) reactive water surfaces; (2) reactive fibre surfaces; and (3) reactive air surfaces.
The comparisons between different types of alternating pressure air surfaces are presented narratively. Overall, all comparisons suggest little to no difference between these surfaces in pressure ulcer incidence (7 studies, 2833 participants; low‐certainty evidence).
Included studies have data on time to pressure ulcer incidence for three comparisons. When time to pressure ulcer development is considered using a hazard ratio (HR), it is uncertain whether there is a difference in the risk of developing new pressure ulcers, over 90 days' follow‐up, between alternating pressure (active) air surfaces and foam surfaces (HR 0.41, 95% CI 0.10 to 1.64; I2 = 86%; 2 studies, 2105 participants; very low‐certainty evidence). For the comparison with reactive air surfaces, there is low‐certainty evidence that people treated with alternating pressure (active) air surfaces may have a higher risk of developing an incident pressure ulcer than those treated with reactive air surfaces over 14 days' follow‐up (HR 2.25, 95% CI 1.05 to 4.83; 1 study, 308 participants). Neither of the two studies with time to ulcer incidence data suggested a difference in the risk of developing an incident pressure ulcer over 60 days' follow‐up between different types of alternating pressure air surfaces.
Secondary outcomes
The included studies have data on (1) support‐surface‐associated patient comfort for comparisons involving foam surfaces, reactive air surfaces, reactive fibre surfaces and alternating pressure (active) air surfaces; (2) adverse events for comparisons involving foam surfaces, reactive gel surfaces and alternating pressure (active) air surfaces; and (3) health‐related quality of life outcomes for the comparison involving foam surfaces. However, all these outcomes and comparisons have low or very low‐certainty evidence and it is uncertain whether there are any differences in these outcomes.
Included studies have data on cost effectiveness for two comparisons. Moderate‐certainty evidence suggests that alternating pressure (active) air surfaces are probably more cost‐effective than foam surfaces (1 study, 2029 participants) and that alternating pressure (active) air mattresses are probably more cost‐effective than overlay versions of this technology for people in acute care settings (1 study, 1971 participants).
Authors' conclusionsCurrent evidence is uncertain about the difference in pressure ulcer incidence between using alternating pressure (active) air surfaces and other surfaces (reactive water surfaces, reactive fibre surfaces and reactive air surfaces). Alternating pressure (active) air surfaces may reduce pressure ulcer risk compared with foam surfaces and reactive gel surfaces used on operating tables followed by foam surfaces applied on hospital beds. People using alternating pressure (active) air surfaces may be more likely to develop new pressure ulcers over 14 days' follow‐up than those treated with reactive air surfaces in the nursing home setting; but as the result is sensitive to the choice of outcome measure it should be interpreted cautiously. Alternating pressure (active) air surfaces are probably more cost‐effective than reactive foam surfaces in preventing new pressure ulcers.
Future studies should include time‐to‐event outcomes and assessment of adverse events and trial‐level cost‐effectiveness. Further review using network meta‐analysis will add to the findings reported here.
Original languageEnglish
JournalCochrane Database of Systematic Reviews
DOIs
Publication statusPublished - 1 Jun 2021

Fingerprint

Dive into the research topics of 'Alternating pressure (active) air surfaces for preventing pressure ulcers'. Together they form a unique fingerprint.

Cite this