TY - JOUR
T1 - Amino functionalised hybrid ultramicroporous materials that enable single-step ethylene purification from a ternary mixture
AU - Zaworotko, Michael
AU - Mukherjee, Soumya
AU - Kumar, Naveen
AU - Bezrukov, Andrey A
AU - Tan, Kui
AU - Pham, Tony
AU - Forrest, Katherine A
AU - Oyekan, Kolade
AU - Qazvini, Omid T
AU - Madden, David G
AU - Space, Brian
N1 - © 2021 Wiley-VCH GmbH.
PY - 2021/1/25
Y1 - 2021/1/25
N2 - Pyrazine-linked hybrid ultramicroporous (pore size <7 Å) materials (HUMs) offer benchmark performance for trace carbon capture thanks to strong selectivity for CO2 over small gas molecules, including light hydrocarbons. That the prototypal pyrazine-linked HUMs are amenable to crystal engineering has enabled second generation HUMs to supersede the performance of the parent HUM, SIFSIX-3-Zn, mainly through substitution of the metal and/or the inorganic pillar. Herein, we report that two isostructural aminopyrazine-linked HUMs, MFSIX-17-Ni (17 = aminopyrazine; M = Si, Ti), which we had anticipated would offer even stronger affinity for CO2 than their pyrazine analogs, unexpectedly exhibit reduced CO2 affinity but enhanced C2H2 affinity. MFSIX-17-Ni are consequently the first physisorbents that enable single-step production of polymer-grade (>99.95% for SIFSIX-17-Ni) ethylene from a ternary equimolar mixture of ethylene, acetylene and CO2 thanks to coadsorption of the latter two gases. We attribute this performance to the very different binding sites in MFSIX-17-Ni versus SIFSIX-3-Zn.
AB - Pyrazine-linked hybrid ultramicroporous (pore size <7 Å) materials (HUMs) offer benchmark performance for trace carbon capture thanks to strong selectivity for CO2 over small gas molecules, including light hydrocarbons. That the prototypal pyrazine-linked HUMs are amenable to crystal engineering has enabled second generation HUMs to supersede the performance of the parent HUM, SIFSIX-3-Zn, mainly through substitution of the metal and/or the inorganic pillar. Herein, we report that two isostructural aminopyrazine-linked HUMs, MFSIX-17-Ni (17 = aminopyrazine; M = Si, Ti), which we had anticipated would offer even stronger affinity for CO2 than their pyrazine analogs, unexpectedly exhibit reduced CO2 affinity but enhanced C2H2 affinity. MFSIX-17-Ni are consequently the first physisorbents that enable single-step production of polymer-grade (>99.95% for SIFSIX-17-Ni) ethylene from a ternary equimolar mixture of ethylene, acetylene and CO2 thanks to coadsorption of the latter two gases. We attribute this performance to the very different binding sites in MFSIX-17-Ni versus SIFSIX-3-Zn.
U2 - 10.1002/anie.202100240
DO - 10.1002/anie.202100240
M3 - Article
C2 - 33491848
SN - 1433-7851
JO - Angewandte Chemie (International ed. in English)
JF - Angewandte Chemie (International ed. in English)
ER -