Ammonium Increases TRPC1 Expression Via Cav-1/PTEN/AKT/GSK3β Pathway

Wei Wang, Li Gu, Alexei Verkhratsky, Liang Peng*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Hyperammonemia occurring following acute liver failure is the primary cause of hepatic encephalopathy. In the brain, ammonium is catabolised by glutamine synthetase expressed exclusively in astroglia; ammonium overload impairs astroglial homeostatic systems. Previously, we had reported that chronic treatment with 3 mM ammonia increased expression of transient receptor potential canonic 1 (TRPC1) channels and Ca2+ release from intracellular Ca2+ stores (Liang et al. in Neurochem Res 39:2127–2135, 2014). Glycogen synthase kinase 3β (GSK-3β) has a key role in several astroglial signalling pathways and is known to be affected in various CNS diseases. We have studied the involvement of Cav-1/PTEN/AKT/GSK-3β signalling system in regulation of TRPC1 gene expression by ammonium. Effects of chronic (1–5 days) treatment with ammonium chloride (ammonium), at pathologically relevant concentrations of 1–5 mM were investigated on primary cultures of mouse cerebral astrocytes. We quantified expression of caveolin-1 (Cav-1), membrane content of phosphatase and tensin homologue (PTEN), phosphorylation of AKT and GSK-3β, and expression of TRPC1 channels. Ammonium significantly increased expression of Cav-1 mRNA and protein, mRNA of TRPC1 as well as membrane content of PTEN; conversely phosphorylation of AKT and GSK-3β were significantly decreased. These changes were abolished following astrocytes treatment with siRNA specific to Cav-1, indicating the involvement of Cav-1/PTEN/PI3K/AKT pathway. Similar results were found in the brains of adult mice subjected to intraperitoneal injection of urease (a model for hyperammoniemia) for 1–5 days. In transgenic mice tagged with an astrocyte-specific or neurone-specific markers (used for fluorescence-activated cell sorting of astrocytes vs. neurones) and treated with intraperitoneal injections of urease for 3 days, the Cav-1 gene mRNA expression was up-regulated in astrocytes, but not in neurones. The up-regulation of TRPC1 gene expression by ammonium was suppressed by GSK-3β inhibitors, lithium salt and AR-A014418, suggesting that increase of GSK-3β activity may play a role in ammonium-related pathologies.

Original languageEnglish
Pages (from-to)762-776
Number of pages15
JournalNeurochemical research
Volume42
Issue number3
Early online date14 Jul 2016
DOIs
Publication statusPublished - 1 Mar 2017

Keywords

  • Ammonium
  • Astrocyte
  • Cav-1, PTEN, PI3K/AKT
  • GSK-3β
  • Hepatic encephalopathy

Fingerprint

Dive into the research topics of 'Ammonium Increases TRPC1 Expression Via Cav-1/PTEN/AKT/GSK3β Pathway'. Together they form a unique fingerprint.

Cite this