TY - JOUR
T1 - Amplification and translocation of 3q26 with overexpression of EVII in fanconi anemia-derived childhood acute myeloid leukemia with biallelic FANCDI/BRCA2 disruption
AU - Meyer, Stefan
AU - Fergusson, William D.
AU - Whetton, Anthony D.
AU - Moreira-Leite, Flavia
AU - Pepper, Stuart D.
AU - Miller, Crispin
AU - Saunders, Emma K.
AU - White, Daniel J.
AU - Will, Andrew M.
AU - Eden, Tim
AU - Ikeda, Hideyuki
AU - Ullmann, Reinhard
AU - Tuerkmen, Seval
AU - Gerlach, Antje
AU - Klopocki, Eva
AU - Tönnies, Holger
PY - 2007/4
Y1 - 2007/4
N2 - Fanconi anemia (FA) is an inherited disease with congenital abnormalities and an extreme risk of acute myeloid leukemia (AML). Genetic events occurring during malignant transformation in FA and the biology of FA-associated AML are poorly understood, but are often preceded by the development of chromosomal aberrations involving 3q26-29 in bone marrow of FA patients. We report here the molecular cytogenetic characterization of FA-derived AML cell lines SB1685CB and SB1690CB by conventional and array comparative genomic hybridization, fluorescence in situ hybridization, and SKY. We identified gains of a 3.7 MB chromosomal region on 3q26.2-26.31, which preceded transformation to overt leukemia. This region harbors the oncogenic transcription factor EVI1. A third FA-derived cell line, FA-AMLI, carried a translocation with ectopic localization of 3q26 including EVI1. Rearrangements of 3q, which are rare in childhood AML, commonly result in overexpression of EVI1, which determines specific gene expression patterns and confers poor prognosis. We detected overexpression of EVI1 in all three FA-derived AML. Our results suggest a link between the FA defect, chromosomal aberrations involving 3q and overexpression of EVI1. We hypothesize that constitutional or acquired FA defects might be a common factor for the development of 3q abnormalities in AML. In addition, cryptic imbalances as detected here might account for overexpression of EVI1 in AML without overt 3q26 rearrangements. © 2007 Wiley-Liss, Inc.
AB - Fanconi anemia (FA) is an inherited disease with congenital abnormalities and an extreme risk of acute myeloid leukemia (AML). Genetic events occurring during malignant transformation in FA and the biology of FA-associated AML are poorly understood, but are often preceded by the development of chromosomal aberrations involving 3q26-29 in bone marrow of FA patients. We report here the molecular cytogenetic characterization of FA-derived AML cell lines SB1685CB and SB1690CB by conventional and array comparative genomic hybridization, fluorescence in situ hybridization, and SKY. We identified gains of a 3.7 MB chromosomal region on 3q26.2-26.31, which preceded transformation to overt leukemia. This region harbors the oncogenic transcription factor EVI1. A third FA-derived cell line, FA-AMLI, carried a translocation with ectopic localization of 3q26 including EVI1. Rearrangements of 3q, which are rare in childhood AML, commonly result in overexpression of EVI1, which determines specific gene expression patterns and confers poor prognosis. We detected overexpression of EVI1 in all three FA-derived AML. Our results suggest a link between the FA defect, chromosomal aberrations involving 3q and overexpression of EVI1. We hypothesize that constitutional or acquired FA defects might be a common factor for the development of 3q abnormalities in AML. In addition, cryptic imbalances as detected here might account for overexpression of EVI1 in AML without overt 3q26 rearrangements. © 2007 Wiley-Liss, Inc.
U2 - 10.1002/gcc.20417
DO - 10.1002/gcc.20417
M3 - Article
SN - 1045-2257
VL - 46
SP - 359
EP - 372
JO - Genes Chromosomes and Cancer
JF - Genes Chromosomes and Cancer
IS - 4
ER -