Abstract
Vertical axis tidal turbines (VATTs) are perceived to be an attractive alternative to their horizontal axis counterparts in tidal streams due to their omni-directionality. The accurate prediction of VATTs demands a turbulence simulation approach that is able to predict accurately flow separation and vortex shedding and a numerical method that can cope with moving boundaries. Thus, in this study an immersed boundary-based large-eddy simulation (LES-IB) method is refined to allow accurate simulation of the blade vortex interaction of VATTs. The method is first introduced and validated for a VATT subjected to laminar flow. Comparisons with highly-accurate body-fitted numerical models results demonstrate the method's ability of reproducing accurately the performance and fluid mechanics of the chosen VATT. Then, the simulation of a VATT under turbulent flow is performed and comparisons with data from experiments and results from RANS-based models demonstrate the accuracy of the method. The vortex-blade interaction is visualised for various tip speed ratios and together with velocity spectra detailed insights into the fluid mechanics of VATTs are provided.
Original language | English |
---|---|
Pages (from-to) | 74-87 |
Number of pages | 14 |
Journal | Computers and Fluids |
Volume | 152 |
Early online date | 7 Apr 2017 |
DOIs | |
Publication status | Published - 18 Jul 2017 |
Keywords
- Direct forcing
- Immersed boundary method
- Large-eddy simulation
- Tidal turbines
- Vertical axis turbines
- Vortex-blade interaction