An infrared spectroscopic study of the OH stretching frequencies of talc and 10-Å phase to 10 GPa

Stephen A. Parry, Alison R. Pawley, Ray L. Jones, Simon M. Clark

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The effects of pressure on the OH stretching frequencies of natural talc and two samples of synthetic 10-Å phase have been measured using a diamond-anvil cell and a synchrotron infrared source. The 10-Å phase was synthesized at 6.0-6.5 GPa, 600 °C for 46 hours (sample 10Å-46) and 160 hours (10Å-160). Spectra were collected up to 9.0 GPa (talc), 9.9 GPa (10Å-46), and 9.6 GPa (10Å-160). The OH stretching vibration of Mg3OH groups in talc occurs at 3677 cm-1 at ambient pressure, and increases linearly with pressure at 0.97(2) cm-1 GPa-1. The same vibration occurs in 10-Å phase, but shows negligible pressure shift up to 2 GPa, above which the frequency increases linearly to the maximum pressure studied, at a rate of 0.96(3) cm-1 GPa-1 (10Å-46) and 0.87(3) cm-1 GPa-1 (10Å-160). Two other prominent bands in the 10-Å phase spectrum are suggested to be due to stretching of interlayer H2O, hydrogen-bonded to the nearest tetrahedral sheet. These bands also show little change over the first 2 GPa of compression, as most of the compression of the structure is taken up by closing non-hydrogen bonded gaps between interlayer H2O and tetrahedral sheets. Between 2 and 4 GPa, changes in band intensities suggest a rearrangement of the interlayer H2O.
    Original languageEnglish
    Pages (from-to)525-531
    Number of pages6
    JournalThe American Mineralogist
    Volume92
    Issue number4
    DOIs
    Publication statusPublished - Apr 2007

    Keywords

    • 10-Å phase
    • High-pressure studies
    • IR spectroscopy
    • Talc

    Fingerprint

    Dive into the research topics of 'An infrared spectroscopic study of the OH stretching frequencies of talc and 10-Å phase to 10 GPa'. Together they form a unique fingerprint.

    Cite this