TY - JOUR
T1 - Anatomy of a submarine channel-levee
T2 - An example from Upper Cretaceous slope sediments, Rosario Formation, Baja California, Mexico
AU - Kane, Ian A.
AU - Kneller, Benjamin C.
AU - Dykstra, Mason
AU - Kassem, Ahmed
AU - McCaffrey, William D.
PY - 2007/3/27
Y1 - 2007/3/27
N2 - To date, facies architecture models of submarine channel-levees have largely been derived from seismic data, isolated core data and limited field studies. We report field observations of an Upper Cretaceous submarine channel-levee complex within the Rosario Formation, Baja California, Mexico, which provide high-resolution data of lithofacies and ichnofacies distribution, and levee depositional thickness decay along transects perpendicular to the channel axis. Within the levee, both sandstone thickness and the overall proportion of sandstone decrease according to a power law away from the channel axis. Spatial variation in sedimentary structures away from the channel axis is predictable and provides an important link to the depositional flow regime. In channel-proximal locations, structureless sands, parallel lamination, overturned ripples, and ripple cross-lamination (including climbing ripple cross-lamination) are common; in channel-distal localities starved ripples are abundant. Sandstone bed thickness generally increases up stratigraphy within the levee succession, which is interpreted to indicate increasing turbidity current magnitude and/or contemporaneous channel floor aggradation reducing relative levee relief. However, in the most channel-proximal location sandstone bed thickness decreases with height; combined with evidence from both facies and palaeocurrent analysis this allows the position of the levee crest to be inferred. The thickest beds occur at higher levels with increasing distance from the channel axis, using this evidence we present a model for levee growth and migration of the crest. Quantitative analysis of ichnofacies distribution reveals that traces typical of the Cruziana and Skolithos ichnofacies are superimposed over the 'normal' background Nereites ichnofacies, forming a 'bioturbation front' which is indicative of proximity to the channel. By analogy with modern canyons and channels, the association of Cruziana and Skolithos ichnofacies with the channel may be attributed to oxygen and nutrient enrichment and possible turbidity current transport of organisms responsible for these ichnofacies.
AB - To date, facies architecture models of submarine channel-levees have largely been derived from seismic data, isolated core data and limited field studies. We report field observations of an Upper Cretaceous submarine channel-levee complex within the Rosario Formation, Baja California, Mexico, which provide high-resolution data of lithofacies and ichnofacies distribution, and levee depositional thickness decay along transects perpendicular to the channel axis. Within the levee, both sandstone thickness and the overall proportion of sandstone decrease according to a power law away from the channel axis. Spatial variation in sedimentary structures away from the channel axis is predictable and provides an important link to the depositional flow regime. In channel-proximal locations, structureless sands, parallel lamination, overturned ripples, and ripple cross-lamination (including climbing ripple cross-lamination) are common; in channel-distal localities starved ripples are abundant. Sandstone bed thickness generally increases up stratigraphy within the levee succession, which is interpreted to indicate increasing turbidity current magnitude and/or contemporaneous channel floor aggradation reducing relative levee relief. However, in the most channel-proximal location sandstone bed thickness decreases with height; combined with evidence from both facies and palaeocurrent analysis this allows the position of the levee crest to be inferred. The thickest beds occur at higher levels with increasing distance from the channel axis, using this evidence we present a model for levee growth and migration of the crest. Quantitative analysis of ichnofacies distribution reveals that traces typical of the Cruziana and Skolithos ichnofacies are superimposed over the 'normal' background Nereites ichnofacies, forming a 'bioturbation front' which is indicative of proximity to the channel. By analogy with modern canyons and channels, the association of Cruziana and Skolithos ichnofacies with the channel may be attributed to oxygen and nutrient enrichment and possible turbidity current transport of organisms responsible for these ichnofacies.
KW - Ichnofacies
KW - Rosario Formation
KW - Submarine channel-levees
KW - Turbidity currents
KW - Upper Cretaceous
UR - http://www.scopus.com/inward/record.url?scp=34548611307&partnerID=8YFLogxK
U2 - 10.1016/j.marpetgeo.2007.01.003
DO - 10.1016/j.marpetgeo.2007.01.003
M3 - Article
AN - SCOPUS:34548611307
SN - 0264-8172
VL - 24
SP - 540
EP - 563
JO - Marine and Petroleum Geology
JF - Marine and Petroleum Geology
IS - 6-9
ER -