Abstract
Endochondral ossification is the developmental process that leads to the formation and coordinated longitudinal growth of the majority of the vertebrate skeleton. Central to this process is chondrocyte differentiation occurring in the growth plate that lies at the junction between the epiphyseal cartilage and the bone. To identify novel factors involved in this differentiation process, suppression subtractive hybridization was performed to amplify preferentially cDNAs uniquely expressed in fetal bovine growth plate chondrocytes as opposed to epiphyseal chondrocytes. The subtracted product was used to screen a fetal bovine chondrocyte cDNA library. One of the cDNA clones identified encoded the bovine orthologue of annexin VIII, a protein not previously described in the growth plate. Northern and Western blotting confirmed that annexin VIII was expressed by growth plate chondrocytes and not by epiphyseal chondrocytes. Immunohistochemistry of the fetal bovine growth plate identified a gradient of increasing annexin VIII protein from the proliferative to the hypertrophic zone. Immunofluorescence localized annexin VIII largely to the chondrocyte cell membrane. In a preliminary study, we examined the distribution of annexin VIII in normal and osteoarthritic (OA) articular cartilage. In OA cartilage, the protein was located in a subset of mid- to deep zone chondrocytes and in the matrix surrounding these cells; no annexin VIII was detected in normal articular cartilage. Thus annexin VIII is a marker for chondrocyte differentiation during normal endochondral ossification and may act as a marker for cells undergoing inappropriate differentiation in OA.
Original language | English |
---|---|
Pages (from-to) | 1851-1858 |
Number of pages | 7 |
Journal | Journal of Bone and Mineral Research |
Volume | 17 |
Issue number | 10 |
DOIs | |
Publication status | Published - 1 Oct 2002 |
Keywords
- Annexin VIII
- Endochondral ossification
- Matrix vesicles
- Osteoarthritis
- Subtractive hybridization