Antibacterial properties and regenerative potential of Sr2+ and Ce3+ doped fluorapatites; a potential solution for peri-implantitis

A. D. Anastasiou, M. Nerantzaki, E. Gounari, M. S. Duggal, P. V. Giannoudis, A. Jha, D. Bikiaris

Research output: Contribution to journalArticlepeer-review

Abstract

Scaffolds and implants in orthopaedics and regenerative dentistry usually fail because of bacterial infections. A promising solution would be the development of biomaterials with both significant regenerative potential and enhanced antibacterial activity. Working towards this direction, fluorapatite was synthesised and doped with Sr2+ and Ce3+ ions in order to tailor its properties. After experiments with four common bacteria (i.e. E. Coli, S. Aureus, B. Subtilis, B. Cereus), it was found that the undoped and the Ce3+ doped fluorapatites present better antibacterial response than the Sr2+ doped material. The synthesised minerals were incorporated into chitosan scaffolds and tested with Dental Pulp Stem Cells (DPSCs) to check their regenerative potential. As was expected, the scaffolds containing Sr2+-doped fluorapatite, presented high osteoconductivity leading to the differentiation of the DPSCs into osteoblasts. Similar results were obtained for the Ce3+-doped material, since both the concentration of osteocalcin and the RUNX2 gene expression were considerably higher than that for the un-doped mineral. Overall, it was shown that doping with Ce3+ retains the good antibacterial profile of fluorapatite and enhances its regenerative potential, which makes it a promising option for dealing with conditions where healing of hard tissues is compromised by bacterial contamination.

Original languageEnglish
Article number14469
JournalScientific Reports
Volume9
Issue number1
Early online date9 Oct 2019
DOIs
Publication statusPublished - 1 Dec 2019

Fingerprint

Dive into the research topics of 'Antibacterial properties and regenerative potential of Sr2+ and Ce3+ doped fluorapatites; a potential solution for peri-implantitis'. Together they form a unique fingerprint.

Cite this