Antimatter transport processes

D. P. Van Der Werf, G. B. Andresen, M. D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P. D. Bowe, C. C. Bray, E. Butler, C. L. Cesar, S. Chapman, M. Charlton, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, J. S. Hangst, W. N. Hardy, R. S. Hayano, M. E. Hayden, A. J. HumphriesR. Hydomako, S. Jonsell, L. V. Jørgensen, L. Kurchaninov, R. Lambo, N. Madsen, S. Menary, P. Nolan, K. Olchanski, A. Olin, A. Povilus, P. Pusa, F. Robicheaux, E. Sarid, D. M. Silveira, C. So, J. W. Storey, R. I. Thompson, J. S. Wurtele, Y. Yamazaki

    Research output: Contribution to journalArticlepeer-review


    A comparison of the 1S-2S transitions of hydrogen and antihydrogen will yield a stringent test of CPT conservation. Necessarily, the antihydrogen atoms need to be trapped to perform high precision spectroscopy measurements. Therefore, an approximately 0.75 T deep neutral atom trap, equivalent to about 0.5 K for ground state (anti)hydrogen atoms, has been superimposed on a Penning-Malmberg trap in which the anti-atoms are formed. The antihydrogen atoms are produced following a number of steps. A bunch of antiprotons from the CERN Antiproton Decelerator is caught in a Penning-Malmberg trap and subsequently sympathetically cooled and then compressed using rotating wall electric fields. A positron plasma, formed in a separate accumulator, is transported to the main system and also compressed. Antihydrogen atoms are then formed by mixing the antiprotons and positrons. The velocity of the anti-atoms, and their binding energies, will strongly depend on the initial conditions of the constituent particles, for example their temperatures and densities, and on the details of the mixing process. In this paper the complete lifecycle of antihydrogen atoms will be presented, starting with the production of the constituent antiparticles and the description of the manipulations necessary to prepare them appropriately for antihydrogen formation. The latter will also be described, as will the possible fates of the anti-atoms. © 2010 IOP Publishing Ltd.
    Original languageEnglish
    Article number012004
    JournalJournal of Physics: Conference Series
    Issue number1
    Publication statusPublished - 2010


    Dive into the research topics of 'Antimatter transport processes'. Together they form a unique fingerprint.

    Cite this