Appetite-modifying actions of pro-neuromedin U-derived peptides

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Neuromedin U (NMU) is known to have potent actions on appetite and energy expenditure. Deletion of the NMU gene in mice leads to an obese phenotype, characterized by hyperphagia and decreased energy expenditure. Conversely, transgenic mice that overexpress proNMU exhibit reduced body weight and fat storage. Here, we show that central administration of NMU or the related peptide neuromedin S (NMS) dose-dependently decreases food intake, increases metabolic rate, and leads to significant weight loss in mice. The effects of NMU and NMS on both feeding and metabolism are almost completely lost in mice lacking the putative CNS receptor for NMU and NMS, NMUr2. However, NMUr2 knockout mice do not exhibit overt differences in body weight or energy expenditure compared with wild-type mice, suggesting that the dramatic phenotype of the NMU gene knockout mouse is not due simply to the loss of NMU/NMUr2 signaling. Putative proteolytic cleavage sites indicate that an additional peptide is produced from the NMU precursor protein, which is extremely well conserved between human, mouse, and rat. Here, we demonstrate that this peptide, proNMU104-136, has a pronounced effect on energy balance in mice. Specifically, central administration of proNMU104-136 causes a significant but transient (∼4 h) increase in feeding, yet both food intake and body weight are decreased over the following 24 h. proNMU104-136 administration also significantly increased metabolic rate. These results suggest that proNMU104-136 is a novel modulator of energy balance and may contribute to the phenotype exhibited by NMU knockout mice. Copyright © 2009 the American Physiological Society.
    Original languageEnglish
    Pages (from-to)E545-E551
    JournalAJP: Endocrinology and Metabolism
    Volume297
    Issue number2
    DOIs
    Publication statusPublished - Aug 2009

    Keywords

    • Energy expenditure
    • Metabolism
    • Neuromedin S
    • Neuromedin U receptor 2
    • Obesity

    Fingerprint

    Dive into the research topics of 'Appetite-modifying actions of pro-neuromedin U-derived peptides'. Together they form a unique fingerprint.

    Cite this