Application of the Gaussian mixture model in pulsar astronomy - pulsar classification and candidates ranking for the Fermi 2FGL catalogue

K. J. Lee, L. Guillemot, Y. L. Yue, M. Kramer, D. J. Champion

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Machine learning, algorithms designed to extract empirical knowledge from data, can be used to classify data, which is one of the most common tasks in observational astronomy. In this paper, we focus on Bayesian data classification algorithms using the Gaussian mixture model and show two applications in pulsar astronomy. After reviewing the Gaussian mixture model and the related expectation-maximization algorithm, we present a data classification method using the Neyman-Pearson test. To demonstrate the method, we apply the algorithm to two classification problems. First, it is applied to the well-known period-period derivative diagram, where we find that the pulsar distribution can be modelled with six Gaussian clusters, with two clusters for millisecond pulsars (recycled pulsars) and the rest for normal pulsars. From this distribution, we derive an empirical definition for millisecond pulsars as Ṗ10-17≤3.23P100ms-2.34. The two millisecond pulsar clusters may have different evolutionary origins, since the companion stars to these pulsars in the two clusters show different chemical compositions. Four clusters are found for normal pulsars. Possible implications for these clusters are also discussed. Our second example is to calculate the likelihood of unidentified Fermi point sources being pulsars and rank them accordingly. In the ranked point-source list, the top 5 per cent sources contain 50 per cent known pulsars, the top 50 per cent contain 99 per cent known pulsars and no known active galaxy (the other major population) appears in the top 6 per cent. Such a ranked list can be used to help the future follow-up observations for finding pulsars in unidentified Fermi point sources. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.
    Original languageEnglish
    Pages (from-to)2832-2840
    Number of pages8
    JournalMonthly Notices of the Royal Astronomical Society
    Volume424
    Issue number4
    DOIs
    Publication statusPublished - 21 Aug 2012

    Keywords

    • Gamma-rays: stars
    • Methods: statistical
    • Pulsars: general

    Fingerprint

    Dive into the research topics of 'Application of the Gaussian mixture model in pulsar astronomy - pulsar classification and candidates ranking for the Fermi 2FGL catalogue'. Together they form a unique fingerprint.

    Cite this