Abstract
Thermoelectric generators (TEGs) convert waste heat to electricity and are a leading contender for improving energy efficiency at a range of scales. Ideal TE materials show a large Seebeck effect, high electrical conductivity, and low thermal conductivity. Alloying is a widelyused approach to engineering the heat transport in TEs, but despite many successes the underlying mechanisms are poorly understood. In previous work, firstprinciples modelling has successfully been used to study the thermodynamics of alloy formation and to investigate its effect on the electronic structure and phonon spectrum. However, it has so far only been possible to examine qualitatively the impact of alloying on the lattice thermal conductivity. In this work, we develop and test two new approaches to addressing this. The constant relaxationtime approximation (CRTA) assumes the primary effect of alloying is on the phonon group velocities, and allows the thermal conductivity to be calculated assuming a suitable constant lifetime. Alternatively, setting the threephonon interaction strengths to a constant further enables an assessment of how changes to the phonon frequency spectrum influence the lifetimes. We test both approaches for the Pnma Sn(S1xSex) alloy system and are able to account for the substantiallyreduced thermal conductivity measured in experiments.
Original language  English 

Journal  Journal of Materials Chemistry C 
Publication status  Accepted/In press  9 Jun 2021 
Fingerprint
Dive into the research topics of 'Approximate models for the lattice thermal conductivity of alloy thermoelectrics'. Together they form a unique fingerprint.Datasets

Data for: Approximate models for the lattice thermal conductivity of alloy thermoelectrics
Skelton, J. (Creator), Mendeley Data, 20 Aug 2021
DOI: 10.17632/hrzkm56zw7.1, https://data.mendeley.com/datasets/hrzkm56zw7
Dataset