Approximation of voxel-level variances from spatial-variances for single scan PET data

P. J. Markiewicz, J. C. Matthews, A. J. Reader

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Abstract

    Variance is one of the important metrics which is very useful in characterizing PET images, in particular when used in parameter estimation of dynamic PET data and in comparing different reconstruction algorithms or correction methods. © 2012 IEEE.
    Original languageEnglish
    Title of host publicationIEEE Nuclear Science Symposium Conference Record|IEEE Nucl. Sci. Symp. Conf. Rec.
    Pages4032-4035
    Number of pages3
    DOIs
    Publication statusPublished - 2012
    Event2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2012 - Anaheim, CA
    Duration: 1 Jul 2012 → …
    http://<Go to ISI>://WOS:000326814203033

    Conference

    Conference2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2012
    CityAnaheim, CA
    Period1/07/12 → …
    Internet address

    Keywords

    • Monte Carlo methods
    • brain
    • image reconstruction
    • iterative methods
    • medical image processing
    • phantoms
    • positron emission tomography
    • statistical analysis
    • Monte Carlo method
    • OSEM
    • bootstrap method
    • correction method
    • iterative reconstruction algorithm
    • ordered subset expectation maximization
    • raclopride
    • single human brain phantom scan
    • single scan PET data
    • voxel-level variance estimation
    • voxel-level variance-standard deviation

    Fingerprint

    Dive into the research topics of 'Approximation of voxel-level variances from spatial-variances for single scan PET data'. Together they form a unique fingerprint.

    Cite this