Abstract
Highly turbid alkali feldspars from the Loch Ainort granite (59 Ma), Isle of Skye, have been analysed using the 40Ar-39Ar method to obtain chronological and chemical (K, Cl, Br, I) information concerning their origin and hydrothermal alteration. Three methods of gas extraction have been applied to neutron-irradiated samples: laser probe spot fusion of feldspars, in vacuo crushing of a feldspar/quartz separate, and laser stepped heating of the crushed residue. Apparent ages obtained by laser probe spot fusion are mostly similar to the 59 Ma intrusion age. Analyses of relatively pristine regions give some high apparent ages (>59 Ma) indicating the presence of small amounts of 40ArE (excess 40Ar). Crushing releases significant amounts of 40ArE, but is dominated by an 40ArA (atmospheric 40Ar) component. 84Kr/36Ar values obtained by crushing are higher than air and are consistent with air equilibration with fresh water at low temperature ∼ 20°C). Therefore, 40ArA was most probably introduced as palaeoatmospheric argon dissolved in the circulating hydrothermal fluids that interacted with the granite, thus supporting a meteoric origin for the fluids. Stepped heating gives a flat age spectrum and an age of 56±4 Ma. Crushing and stepped heating both released significant amounts of halogens with high Br/Cl and I/Cl ratios; excess Xe is also present as indicated by the high 132Xe/36Ar values. It seems likely that the halogen (and possibly Xe) enrichments resulted from interaction of the meteoric fluids with Jurassic sedimentary country rocks.
Original language | English |
---|---|
Pages (from-to) | 345-355 |
Number of pages | 11 |
Journal | Contributions to Mineralogy and Petrology |
Volume | 115 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jan 1994 |
Keywords
- Jurassic
- Halogen
- Crushing
- Hydrothermal Fluid
- Hydrothermal alteration