Artificial Intelligence systems as prognostic and predictive tools in ovarian cancer

Amir Enshaei, Craig Robson, Richard Edmondson

    Research output: Contribution to journalArticlepeer-review

    Abstract

    BACKGROUND: The ability to provide accurate prognostic and predictive information to patients is becoming increasingly important as clinicians enter an era of personalized medicine. For a disease as heterogeneous as epithelial ovarian cancer, conventional algorithms become too complex for routine clinical use. This study therefore investigated the potential for an artificial intelligence model to provide this information and compared it with conventional statistical approaches. METHODS: The authors created a database comprising 668 cases of epithelial ovarian cancer during a 10-year period and collected data routinely available in a clinical environment. They also collected survival data for all the patients, then constructed an artificial intelligence model capable of comparing a variety of algorithms and classifiers alongside conventional statistical approaches such as logistic regression. RESULTS: The model was used to predict overall survival and demonstrated that an artificial neural network (ANN) algorithm was capable of predicting survival with high accuracy (93 %) and an area under the curve (AUC) of 0.74 and that this outperformed logistic regression. The model also was used to predict the outcome of surgery and again showed that ANN could predict outcome (complete/optimal cytoreduction vs. suboptimal cytoreduction) with 77 % accuracy and an AUC of 0.73. CONCLUSIONS: These data are encouraging and demonstrate that artificial intelligence systems may have a role in providing prognostic and predictive data for patients. The performance of these systems likely will improve with increasing data set size, and this needs further investigation.
    Original languageEnglish
    Pages (from-to)3970-3975
    Number of pages5
    JournalAnnals of Surgical Oncology
    Volume22
    Issue number12
    DOIs
    Publication statusPublished - 2015

    Fingerprint

    Dive into the research topics of 'Artificial Intelligence systems as prognostic and predictive tools in ovarian cancer'. Together they form a unique fingerprint.

    Cite this