Abstract
The Ginzburg–Landau functional is a phase transition model which is suitable for classification type problems. We study the asymptotics of a sequence of Ginzburg–Landau functionals with anisotropic interaction potentials on point clouds Ψ_n where n denotes the number data points. In particular, we show the limiting problem, in the sense of Γ-convergence, is related to the total variation norm restricted to functions taking binary values, which can be understood as a surface energy. We generalize the result known for isotropic interaction potentials to the anisotropic case and add a result concerning the rate of convergence.
Original language | English |
---|---|
Pages (from-to) | 387-427 |
Journal | Proceedings of the Royal Society of Edinburgh Section A: Mathematics |
Volume | 149 |
Issue number | 2 |
Early online date | 27 Dec 2018 |
DOIs | |
Publication status | Published - 2019 |