Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis, via glycolysis and ketone production

Claudia Capparelli, Carmela Guido, Diana Whitaker-Menezes, Gloria Bonuccelli, Renee Balliet, Timothy G. Pestell, Allison F. Goldberg, Richard G. Pestell, Anthony Howell, Sharon Sneddon, Ruth Birbe, Aristotelis Tsirigos, Ubaldo Martinez-Outschoorn, Federica Sotgia, Michael P. Lisanti

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Senescent fibroblasts are known to promote tumor growth. However, the exact mechanism remains largely unknown. An important clue comes from recent studies linking autophagy with the onset of senescence. Thus, autophagy and senescence may be part of the same physiological process, known as the autophagy-senescence transition (AST). To test this hypothesis, human fibroblasts immortalized with telomerase (hTERT-BJ1) were stably transfected with autophagy genes (BNIP3, CTSB or ATG16L1). Their overexpression was sufficient to induce a constitutive autophagic phenotype, with features of mitophagy, mitochondrial dysfunction and a shift toward aerobic glycolysis, resulting in L-lactate and ketone body production. Autophagic fibroblasts also showed features of senescence, with increased p21(WAF1/CIP1), a CDK inhibitor, cellular hypertrophy and increased β-galactosidase activity. Thus, we genetically validated the existence of the autophagy-senescence transition. Importantly, autophagic-senescent fibroblasts promoted tumor growth and metastasis, when co-injected with human breast cancer cells, independently of angiogenesis. Autophagic-senescent fibroblasts stimulated mitochondrial metabolism in adjacent cancer cells, when the two cell types were co-cultured, as visualized by MitoTracker staining. In particular, autophagic ATG16L1 fibroblasts, which produced large amounts of ketone bodies (3-hydroxy-butyrate), had the strongest effects and promoted metastasis by up to 11-fold. Conversely, expression of ATG16L1 in epithelial cancer cells inhibited tumor growth, indicating that the effects of autophagy are compartment-specific. Thus, autophagic-senescent fibroblasts metabolically promote tumor growth and metastasis, by paracrine production of high-energy mitochondrial fuels. Our current studies provide genetic support for the importance of "two-compartment tumor metabolism" in driving tumor growth and metastasis via a simple energy transfer mechanism. Finally, β-galactosidase, a known lysosomal enzyme and biomarker of senescence, was localized to the tumor stroma in human breast cancer tissues, providing in vivo support for our hypothesis. Bioinformatic analysis of genome-wide transcriptional profiles from tumor stroma, isolated from human breast cancers, also validated the onset of an autophagy-senescence transition. Taken together, these studies establish a new functional link between host aging, autophagy, the tumor microenvironment and cancer metabolism. © 2012 Landes Bioscience.
    Original languageEnglish
    Pages (from-to)2285-2302
    Number of pages17
    JournalCell Cycle
    Volume11
    Issue number12
    DOIs
    Publication statusPublished - 15 Jun 2012

    Keywords

    • ATG16L1
    • Autophagy
    • Beclin1
    • BNIP3
    • BNIP3L
    • Cancer metabolism
    • Cancer-associated fibroblasts
    • Cathepsin B
    • Glycolysis
    • Senescence
    • Tumor stroma

    Fingerprint

    Dive into the research topics of 'Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis, via glycolysis and ketone production'. Together they form a unique fingerprint.

    Cite this